分析 (1)證相關線段所在的三角形相似即可,即證Rt△ADC∽Rt△CDB;
(2)易證得CE:BF=AC:BC,聯立(1)的結論,即可得出CE:BF=CD:BD,由此易證得△CED∽△BFD,即可得出∠CDE=∠BDF,由于∠BDF和∠CDF互余,則∠EDC和∠CDF也互余,由此可求得∠EDF的度數.
解答 解:(1)∵CD⊥AB,
∴∠A+∠ACD=90°
又∵∠A+∠B=90°
∴∠B=∠ACD
∴Rt△ADC∽Rt△CDB
∴$\frac{AC}{BC}$=$\frac{CD}{BD}$;
(2)∵$\frac{CE}{BF}$=$\frac{\frac{1}{3}AC}{\frac{1}{3}BC}$=$\frac{AC}{BC}$,
又∵∠ACD=∠B,
∴△CED∽△BFD;
∴∠CDE=∠BDF;
∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.
點評 此題考查的是相似三角形的判定和性質;識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊、對應角,可利用數形結合思想根據圖形提供的數據計算對應角的度數、對應邊的比.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com