【題目】如圖,一次函數(shù)
與反比例函數(shù)
(
為常數(shù),
)的圖像在第一象限內(nèi)交于點
,且與
軸、
軸分別交于
兩點.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)點
在
軸上,且
的面積等于
,求點
的坐標(biāo).
![]()
【答案】(1)
;
;(2)點P的坐標(biāo)為(3,0)或(
,0);
【解析】
(1)把點A(1,2)分別代入解析式,求出k和b的值,即可得到答案;
(2)先求出點B、C的坐標(biāo),然后得到OC,設(shè)點P為(x,0),則
,利用三角形的面積公式,即可求出答案.
解:(1)把點A(1,2)代入
,則
,
∴反比例函數(shù)的解析式為:
;
把點A(1,2)代入
,則
,
∴一次函數(shù)的解析式為:
;
(2)在一次函數(shù)
中,
令
,則
,
∴點C的坐標(biāo)為(0,1),
∴OC=1;
令
,則
,
∴點B的坐標(biāo)為(
,0);
設(shè)點P(x,0),
∴
,
∴
;
∴
,
∴
,
,
∴點P的坐標(biāo)為(3,0)或(
,0);
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是⊙
的直徑,
是⊙
上一點,
是
的中點,過點D作⊙O的切線,與AB,AC的延長線分別交于點E,F,連結(jié)AD.
![]()
(1)求證:AF⊥EF; (2)若
,AB=5,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,以CD為直徑的⊙O分別交AC,BC于點E,F兩點,過點F作FG⊥AB于點G.
(1)試判斷FG與⊙O的位置關(guān)系,并說明理由.
(2)若AC=3,CD=2.5,求FG的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=4,點P在邊AB上,若△APC為以AC為腰的等腰三角形,則tan∠BCP=________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,點
分別在邊
上,
,點
從點
出發(fā)沿
向點
運動,運動到點
結(jié)束,以
為斜邊作等腰直角三角形
(點
按順時針排列) ,在點
運動過程中點
經(jīng)過的路徑長是 __________
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E,F分別在正三角形
的三邊上,且
也是正三角形.若
的邊長為a,
的邊長為b,則
的內(nèi)切圓半徑為( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
交x軸于A、B兩點,其中點A坐標(biāo)為
,與y軸交于點C,且對稱軸在y軸的左側(cè),拋物線的頂點為P.
(1)當(dāng)
時,求拋物線的頂點坐標(biāo);
(2)當(dāng)
時,求b的值;
(3)在(1)的條件下,點Q為x軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線
、
分別交拋物線的對稱軸于點M、N.請問
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線
與
軸交于
,
兩點,與
軸交于點
,其中
,
.
(1)求拋物線的解析式;
(2)連接
,在直線
上方的拋物線上有一動點
,連接
,與直線
相交于點
,當(dāng)
時, 求
的值;
(3)點
是直線
上一點,在平面內(nèi)是否存在點
,使以點
,
,
,
為頂點的四邊形是菱形?若存在,直接寫出點
的坐標(biāo);若不存在,請說明理由.
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax-2amx+am2+2m-5與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點,頂點為P.
(1)當(dāng)a=1,m=2時,求線段AB的長度;
(2)當(dāng)a=2,若點P到x軸的距離與點P到y軸的距離相等,求該拋物線的解析式;
(3)若a=
,當(dāng)2m-5≤x≤2m-2時,y的最大值為2,求m的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com