【題目】(2015·陜西)已知橢圓E:
(a>b>0)的半焦距為c,原點(diǎn)0到經(jīng)過(guò)兩點(diǎn)(c,0),(0,b)的直線的距離為
c.
(1)求橢圓E的離心率
(2)如圖,AB是圓M:(x+2)2+(y-1)=
的一條直徑,若橢圓E經(jīng)過(guò)A,B兩點(diǎn),求橢圓E的方程.![]()
【答案】
(1)
![]()
(2)
![]()
【解析】先寫(xiě)過(guò)點(diǎn)(c,0),(0,b)的直線方程,再計(jì)算原點(diǎn)o到該直線的距離,進(jìn)而可得橢圓E的離心率;(II)先由(I)知橢圓E的方程,設(shè)AB的方程,聯(lián)立
,消去y,可得x1+x2和x1x2的值,進(jìn)而可得k,再利用|AB|=
可得b2的值,進(jìn)而可得橢圓E的方程.
試題解析:(I)過(guò)點(diǎn)(c,0),(0,b)的直線方程為bx+cy-bc=0,
則原點(diǎn)O到直線的距離d=
,
由d=
,得a=2b=2
,解得離心率
=
.
(II)解法一:由(I)知,橢圓E的方程為.x2+4y2=4b2(1)
依題意,圓心M(-2,1)是線段AB的中點(diǎn),且|AB|=
.
易知,AB不與x軸垂直,設(shè)其直線方程為y=k(x+2)+1,代入(1)得
(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0
設(shè)A(x1,y1), B (x2, y2 ) 則x1+x2=-
, x1·x2=-![]()
由x1+x2=-4,得=
=-4解得k=![]()
從而.x1·x2=8-2b2.
于是.|AB|=
|x1-x2|=![]()
=![]()
由|AB|=
,得
=
,解得b2=3
故橢圓E的方程為![]()
解法二:由(I)知,橢圓E的方程為x2+4y2=4b2. (2)
依題意,點(diǎn)A,B關(guān)于圓心M(-2,1)對(duì)稱,且|AB|=
.
設(shè)A(x1,y1), B (x2, y2 )則,x12+4y12=4b2 , x22+y22=4b2
兩式相減并結(jié)合x(chóng)1+x2=-4, y1+y2=2得-4(x1-x2)+8(y1-y2)=0.
易知,AB不與x軸垂直,則x1≠x2 , 所以AB的斜率kAB=
=![]()
因此AB直線方程為y=
(x+2)+1,代入(2)得x2+4x+8-2b2=0
所以,x1+x2=-4, x1·x2=8-2b2.
于是.|AB|=
|x1-x2|=![]()
=![]()
由|AB|=
,得
=
,解得b2=3.
故橢圓E的方程為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知
平面
,點(diǎn)
分別是
的中點(diǎn)。![]()
(1)求證:![]()
平面![]()
(2)求證:平面
平面![]()
(3)求直線
與平面
所成角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左焦點(diǎn)為
,離心率為
, 點(diǎn)
在橢圓上且位于第一象限,直線
被圓
截得的線段的長(zhǎng)為
.(1)求直線 F M 的斜率(2)求橢圓的方程(3)設(shè)動(dòng)點(diǎn) P 在橢圓上,若直線FP的斜率大于
,求直線OP( O 為原點(diǎn))的斜率的取值范圍
(1)求直線
的斜率
(2)求橢圓的方程
(3)設(shè)動(dòng)點(diǎn)
在橢圓上,若直線
的斜率大于
, 求直線
(
為原點(diǎn))的斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
設(shè)
,Xn是曲線y=X2n+2+1在點(diǎn)(1,2)處的切線與x軸焦點(diǎn)的橫坐標(biāo)
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)記Tn=![]()
....
,證明Tn![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導(dǎo)致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當(dāng)前最大流量的比值為 .![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
設(shè)函數(shù)![]()
①若
,則
的最小值為 ;
②若
恰有2個(gè)零點(diǎn),則實(shí)數(shù)
的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次馬拉松比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示,若將運(yùn)動(dòng)員按成績(jī)由好到差編為
號(hào),再用系統(tǒng)抽樣方法從中抽取7人,則其中成績(jī)?cè)趨^(qū)間
上的運(yùn)動(dòng)員人數(shù)是 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+
|+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列{an}中,a1=﹣2,a12=20. (Ⅰ)求通項(xiàng)an;
(Ⅱ)若
,求數(shù)列
的前n項(xiàng)和.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com