【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0而是它的一個(gè)均值點(diǎn). 例如y=|x|是[﹣2,2]上的“平均值函數(shù)”,0就是它的均值點(diǎn).給出以下命題:
①函數(shù)f(x)=sinx﹣1是[﹣π,π]上的“平均值函數(shù)”;
②若y=f(x)是[a,b]上的“平均值函數(shù)”,則它的均值點(diǎn)x0≤
;
③若函數(shù)f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m∈(﹣2,0);
④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn),則lnx0<
.
其中的真命題有(寫出所有真命題的序號(hào)).
【答案】①③④
【解析】解:①∵
=0,而f(
)=0, ∴f(x)=sinx﹣1是[﹣π,π]上的“平均值函數(shù)”,故①正確;②若f(x)=0,則
=0,顯然(a,b)上的任意1個(gè)數(shù)都是f(x)的均值點(diǎn),故②錯(cuò)誤;③若函數(shù)f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函數(shù)”,
則區(qū)間(﹣1,1)上存在x0使得f(x0)=
=m,
即x02+mx0﹣1=m,∴m=
=﹣x0﹣1,
∵x0∈(﹣1,1),∴m∈(﹣2,0).故③正確;④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn),
∴l(xiāng)nx0=
=
,則lnx0﹣
=
﹣
.
令
=t,則b=at2(t>1),
∴
﹣
=
﹣
=
(
)=
(2lnt﹣t+
),
令g(t)=2lnt﹣t+
,則g′(t)=
=
=
<0,
∴g(t)在(1,+∞)上是減函數(shù),
∴g(t)<g(1)=0,
∴
﹣
<0,即lnx0<
,故④正確.
所以答案是:①③④.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,(
,
).
(1)若
,
,求函數(shù)
的單調(diào)減區(qū)間;
(2)若
時(shí),不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
,
時(shí),記函數(shù)
的導(dǎo)函數(shù)
的兩個(gè)零點(diǎn)是
和
(
),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)用
這六個(gè)數(shù)字,可以組成多少個(gè)分別符合下
列條件的無重復(fù)數(shù)字的四位數(shù):(1)奇數(shù);(2)偶數(shù);(3)大于
的數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)
的圖象向右平移
個(gè)單位,再把所有點(diǎn)的橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變),得函數(shù)y=g(x)的圖象,則g(x)圖象的一個(gè)對(duì)稱中心為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,
,
均在圓
上.
(1)求圓
的方程;
(2)若直線
與圓
相交于
、
兩點(diǎn),求
的長(zhǎng);
(3)設(shè)過點(diǎn)
的直線
與圓
相交于
、
兩點(diǎn),試問:是否存在直線
,使得以
為直徑的圓經(jīng)過原點(diǎn)
?若存在,求出直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
. (I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若不等式f(x)>
恒成立,求整數(shù)k的最大值;
(III)求證:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為原點(diǎn)O的拋物線C1的焦點(diǎn)F與橢圓C2:
=1(a>b>0)的右焦點(diǎn)重合,C1與C2在第一和第四象限的交點(diǎn)分別為A、B.
(1)若△AOB是邊長(zhǎng)為2
的正三角形,求拋物線C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點(diǎn)P為橢圓C2上的任一點(diǎn),若直線AP、BP分別與x軸交于點(diǎn)M(m,0)和N(n,0),證明:mn=a2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中,a2=4,a4+a7=15. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2
+n,求b1+b2+b3+…+b10的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com