【題目】函數(shù)
.
(1)當(dāng)
,
時(shí),求
的單調(diào)減區(qū)間;
(2)
時(shí),函數(shù)
,若存在
,使得
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)見(jiàn)解析 (2)![]()
【解析】試題分析:
(1)原函數(shù)的導(dǎo)函數(shù)為
,對(duì)實(shí)數(shù)n分類(lèi)討論可得:
①當(dāng)
時(shí),
的單調(diào)減區(qū)間為
;
②當(dāng)
時(shí),
的單調(diào)減區(qū)間為
;
③當(dāng)
時(shí),減區(qū)間為
.
(2)由題意結(jié)合恒成立的條件構(gòu)造新函數(shù)設(shè)
,結(jié)合函數(shù)h(t)的性質(zhì)分類(lèi)討論可得實(shí)數(shù)
的取值范圍是
.
試題解析:
(1)
,定義域?yàn)?/span>
,
,
①當(dāng)
時(shí),
,此時(shí)
的單調(diào)減區(qū)間為
;
②當(dāng)
時(shí),
時(shí),
,此時(shí)
的單調(diào)減區(qū)間為
;
③當(dāng)
時(shí),
時(shí),
,此時(shí)減區(qū)間為
.
(2)
時(shí),
,
∵
,∴
,即
,
設(shè)
,∴
,∴
.
設(shè)
,
,
,
①當(dāng)
時(shí),
,
故
,∴
在
上單調(diào)遞增,因此
;
②當(dāng)
時(shí),令
,得:
,
,
由
和
,得:
,故
在
上單調(diào)遞減,此時(shí)
.
綜上所述,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某租賃公司擁有汽車(chē)100輛.當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出.當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛.租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.
(Ⅰ)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(Ⅱ)當(dāng)每輛車(chē)的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值是M,最小值是m,且M=2m,則實(shí)數(shù)a=( )
A.![]()
B.2
C.![]()
且2
D.![]()
或2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z1 , z2滿足|z1|=|z2|=1,|z1﹣z2|=
,則|z1+z2|等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有這樣一則問(wèn)題:“今有良馬與弩馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說(shuō)法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時(shí),良馬走了二十一日.
則以上說(shuō)法錯(cuò)誤的個(gè)數(shù)是( )個(gè)
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)圓M與圓(x﹣1)2+y2=1相外切且與y軸相切,則動(dòng)圓M的圓心的軌跡記C,
(1)求軌跡C的方程;
(2)定點(diǎn)A(3,0)到軌跡C上任意一點(diǎn)的距離|MA|的最小值;
(3)經(jīng)過(guò)定點(diǎn)B(﹣2,1)的直線m,試分析直線m與軌跡C的公共點(diǎn)個(gè)數(shù),并指明相應(yīng)的直線m的斜率k是否存在,若存在求k的取值或取值范圍情況[要有解題過(guò)程,沒(méi)解題方程只有結(jié)論的只得結(jié)論分].
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對(duì)于任意x∈R,都有f(x﹣2)≤f(x),則實(shí)數(shù)a的取值范圍是( )
A.[﹣
,
]
B.[﹣
,
]
C.[﹣
,
]
D.[﹣
,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
),曲線
在點(diǎn)
處的切線與直線
垂直.
(1)試比較
與
的大小,并說(shuō)明理由;
(2)若函數(shù)
有兩個(gè)不同的零點(diǎn)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ﹣
)=1,A,B分別為C與x軸,y軸的交點(diǎn).
(1)寫(xiě)出C的直角坐標(biāo)方程,并求A,B的極坐標(biāo);
(2)設(shè)M為曲線C上的一個(gè)動(dòng)點(diǎn),
=λ
(λ>0),|
||
|=2,求動(dòng)點(diǎn)Q的極坐標(biāo)方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com