【題目】已知橢圓
上的點到兩個焦點的距離之和為
,短軸長為
,直線
與橢圓C交于M、N兩點.
(1)求橢圓C的方程;
(2)若直線
與圓
相切,證明:
為定值
【答案】(1)
(2)詳見解析
【解析】
(1)根據(jù)橢圓的有關(guān)知識可得
,從而可得橢圓的方程;
(2)分直線的斜率存在與否兩種情況求解.①當(dāng)
的斜率不存在時,其方程為
,可得
、
的坐標(biāo),由向量的數(shù)量積可得
;②當(dāng)
的斜率存在時,設(shè)其方程為
,由直線與圓相切得
.然后將直線方程與橢圓方程聯(lián)立、消元,根據(jù)根與系數(shù)的關(guān)系由數(shù)量積可得
,從而可得
.綜上可得
為定值.
(1)由題意得![]()
,
∴橢圓
的方程為
(2)①當(dāng)直線
的斜率不存在時,因為直線與圓相切,所以直線
方程為
.
當(dāng)
時,可得M、N兩點坐標(biāo)分別為
,
,
.
當(dāng)
時,同理可得
;
②當(dāng)
的斜率存在時,設(shè)
,
由題意得
,
,
由
,消去
整理得
,
∵直線
與圓相交,∴![]()
設(shè)
,則
,
,
,
.
綜上
(定值) .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,已知橢圓
,若圓![]()
的一條切線與橢圓
有兩個交點
,且
.
![]()
(1)求圓
的方程;
(2)已知橢圓
的上頂點為
,點
在圓
上,直線
與橢圓
相交于另一點
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱
的底面是正三角形,
底面
,M為
的中點.
![]()
(1)求證:
平面
;
(2)若
,且沿側(cè)棱
展開三棱柱的側(cè)面,得到的側(cè)面展開圖的對角線長為
,求作點
在平面
內(nèi)的射影H,請說明作法和理由,并求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
世紀(jì)中葉,中國數(shù)學(xué)家賈憲給出了直到六次冪的二項式系數(shù)表,如圖所示是《楊輝詳解九章算法》開方作法本原,其中第
層即為
展開式的系數(shù).賈憲稱整張數(shù)表為“開放作法本原”,今稱“賈憲三角”但賈憲未給出二項式系數(shù)的一般公式,因而未能建立一般正整數(shù)次冪的二項式定理.賈憲的數(shù)學(xué)著作已失傳,
世紀(jì)數(shù)學(xué)家楊輝在《詳解九章算法》
中引用了開放作法本原圖,注明此圖出“《釋鎖算數(shù)》,賈憲用此術(shù)”,因而流傳至今.只是后人往往因此把它誤稱為“楊輝三角”.
展開式中
的系數(shù)為
,①則實數(shù)
的值為_______________,②展開式中各項系數(shù)之和為__________________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),若以
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)若
是曲線
上的任意一點,
是曲線
上的任意一點,求線段
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
為曲線
上的動點,點
在射線
上,且滿足
.
(Ⅰ)求點
的軌跡
的直角坐標(biāo)方程;
(Ⅱ)設(shè)
與
軸交于點
,過點
且傾斜角為
的直線
與
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與語文的水平測試成績抽樣統(tǒng)計如下表:
數(shù)學(xué)(x)
語文(y) | 90分~100分 (數(shù)A) | 80分~90分 (數(shù)B) | 60分~80分 (數(shù)C) |
90分~100分 (語A) | 20 | 7 | 5 |
80分~90分 (語B) | 18 | 9 | 6 |
60分~80分 (語C) | 4 | a | b |
設(shè)x,y分別表示數(shù)學(xué)成績與語文成績,若抽取學(xué)生n人,成績在90分~100分者記為A等級(優(yōu)秀),成績在80分~90分者記為B等級(良好),成績在60分~80分者記為C等級(及格).例如:表中數(shù)學(xué)成績?yōu)?/span>A等級的共有
人.已知x與y均為B等級的概率是0.09.
(1)若在該樣本中,數(shù)學(xué)成績良好率是30%,求a,b的值;
(2)在語文成績?yōu)?/span>C等級的學(xué)生中,已知
,
,求數(shù)學(xué)成績?yōu)?/span>B等級的人數(shù)比C等級的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在給出三個條件:①a=2;②B
;③c
b.試從中選出兩個條件,補充在下面的問題中,使其能夠確定△ABC,并以此為依據(jù),求△ABC的面積.
在△ABC中,a、b、c分別是角A、B、C的對邊,且滿足
,求△ABC的面積(選出一種可行的方案解答,若選出多個方案分別解答,則按第一個解答記分)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com