【題目】小南利用幾何畫板畫圖,探索結(jié)論,他先畫∠MAN=90°,在射線AM上取一點(diǎn)B,在射線AN上取一點(diǎn)C,連接BC,再作點(diǎn)A關(guān)于直線BC的對稱點(diǎn)D,連接AD、BD,得到如圖所示圖形,移動(dòng)點(diǎn)C,小南發(fā)現(xiàn):當(dāng)AD=BC時(shí),∠ABD=90°;請你繼續(xù)探索;當(dāng)2AD=BC時(shí),∠ABD的度數(shù)是_____.
【答案】30°或150°
【解析】
分兩種情況,取BC的中點(diǎn)E,連接AE,DE,依據(jù)直角三角形斜邊上中線的性質(zhì),即可得到△ADE是等邊三角形,進(jìn)而依據(jù)軸對稱的性質(zhì)得出∠ABD的度數(shù).
解:分兩種情況:
如圖,當(dāng)AB>AC時(shí),取BC的中點(diǎn)E,連接AE,DE,
![]()
則AE=DE=
BC,
即BC=2AE=2DE,
又∵BC=2AD,
∴AD=AE=DE,
∴△ADE是等邊三角形,
∴∠AED=60°,
又∵BC垂直平分AD,
∴∠AEC=30°,
又∵BE=AE,
∴∠ABC=
∠AEC=15°,
∴∠ABD=2∠ABC=30°;
如圖,當(dāng)AB<AC時(shí),同理可得∠ACD=30°,
![]()
又∵∠BAC=∠BDC=90°,
∴∠ABD=150°,
故答案為:30°或150°.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點(diǎn)O,DH⊥AB于點(diǎn)H,連接OH,∠CAD=20°,則∠DHO的度數(shù)是( 。
![]()
A.20°B.25°C.30°D.40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,
中,
,
是
的中點(diǎn),過點(diǎn)
作
于點(diǎn)
;過點(diǎn)
作
,交
的延長線于點(diǎn)
.
![]()
(1)求證:
;
(2)某數(shù)學(xué)興趣小組解答(1)后發(fā)現(xiàn),在圖中只需將
剪下來拼到
處,就可得到一個(gè)與
等面積的矩形
繼續(xù)討論后又發(fā)現(xiàn),任意三角形也可以剪拼成一個(gè)等面積的矩形,請你在圖②中畫出一種剪拼示意圖,并簡要說明作法(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知
是等腰直角三角形,
,點(diǎn)D是BC的中點(diǎn)
作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)
,
判斷
中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;
若
,當(dāng)AE取最大值時(shí),求AF的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線
頂點(diǎn)為
.
![]()
(1)
點(diǎn)坐標(biāo)為______(結(jié)果用
表示).
(2)當(dāng)
時(shí),如圖所示,該拋物線與
軸交于
,
兩點(diǎn).
為拋物線第二象限一點(diǎn),過
作
的垂線,垂足為
,
為射線
上一點(diǎn),若
,求
;
(3)
,
,若該拋物線與線段
只有一個(gè)公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
是
的直徑,過
點(diǎn)作
,交弦
于點(diǎn)
,交
于點(diǎn)
,且使
.
![]()
(1)求證:
是
的切線;
(2)若
,
,求
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
![]()
請根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為________;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名男生,請估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為1200×
=108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊AB在x軸上,點(diǎn)B坐標(biāo)(﹣3,0),點(diǎn)C在y軸正半軸上,且sin∠CBO=
,點(diǎn)P從原點(diǎn)O出發(fā),以每秒一個(gè)單位長度的速度沿x軸正方向移動(dòng),移動(dòng)時(shí)間為t(0≤t≤5)秒,過點(diǎn)P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.
(1)求點(diǎn)D坐標(biāo).
(2)求S關(guān)于t的函數(shù)關(guān)系式.
(3)在直線l移動(dòng)過程中,l上是否存在一點(diǎn)Q,使以B、C、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,直接寫出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com