分析 (1)由旋轉得到∠BAC=∠BAD,而DF⊥AC,從而得出∠ABC=45°,最后判斷出△ABC是等腰直角三角形;
(2)由旋轉得到∠BAC=∠BAD,再根據∠DAF=∠DBA,從而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可.
解答 解:(1)由旋轉得,∠BAC=∠BAD,
∵DF⊥AC,
∴∠CAD=90°,
∴∠BAC=∠BAD=45°,
∵∠ACB=90°,
∴∠ABC=45°,
∴AC=CB,
(2)AF=BE,
理由:由旋轉得,AD=AB,
∴∠ABD=∠ADB,
∵∠DAF=∠ABD,
∴∠DAF=∠ADB,
∴AF∥BD,
∴∠BAC=∠ABD,
∵∠ABD=∠FAD
由旋轉得,∠BAC=∠BAD,
∴∠FAD=∠BAC=∠BAD=$\frac{1}{3}$×180°=60°,
由旋轉得,AB=AD,
∴△ABD是等邊三角形,
∴AD=BD,
在△AFD和△BED中,
$\left\{\begin{array}{l}{∠F=∠BED=90°}\\{∠FAD=∠BED}\\{AD=BD}\end{array}\right.$,
∴△AFD≌△BED,
∴AF=BE.
點評 此題主要考查了,等腰直角三角形的性質和判定,全等三角形的性質和判定,相似三角形的性質和判定,旋轉的性質,解本題的關鍵是熟練掌握旋轉的性質.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com