【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(4,0),C點的坐標為(0,6),點B在第一象限內,點P從原點出發,以每秒2個單位長度的速度沿著O-C-B-A-O的路線循環移動.
(1)寫出點B的坐標;
(2)當點P移動了4秒時,求出此時點P的坐標;
(3)在移動第一周的過程中,當△OBP的面積是8時,求出此時點P的坐標;
(4)若在點P出發的同時,另外有一點Q也從原點出發,以每秒1個單位長度的速度沿著O-A-B-C-O的路線循環運動,請直接寫出點P和點Q在第2020次相遇時的坐標.
![]()
【答案】(1)點B(4,6);(2)點P坐標為(2,6);(3)(0,4),(
,6),(4,2),(
,0);(4)(4,
).
【解析】
(1)由矩形的性質可得AB=OC=6,BC=OA=4,可求點B坐標;
(2)由題意可得點P在BC上,即可求點P坐標;
(3)分點P在OC上,在BC上,在AB上,在AO上四種情況討論,由三角形的面積公式可求點P坐標;
(4)找到點P和點Q相遇時坐標規律可求解.
(1)∵A點的坐標為(4,0),C點的坐標為(0,6),
∴OA=4,OC=6.
∵四邊形ABCO是矩形,
∴AB=OC=6,BC=OA=4,
∴點B(4,6);
(2)∵4×2=8>6,
∴點P在BC上,
∴PC=2,
∴點P坐標為(2,6);
(3)如圖,
![]()
①當點P在OC上時,S△OBP=
=8,
∴OP1=4,
∴點P(0,4),
②當點P在BC上,S△OBP=
BP2×6=8,
∴BP2=
,
∴CP2=4-
=
,
∴點P(
,6),
③當點P在AB上,S△OBP=
BP3×4=8,
∴BP3=4,
∴AP3=2,
∴點P(4,2),
④當點P在AO上,S△OBP=
OP4×6=8,
∴OP4=
,
∴點P(
,0),
(3)∵第一次相遇所需時間=
=
s,
∴點P,點Q相遇時坐標為(4,
),
同理可求:第二次相遇時坐標為(
,6),第三次相遇時坐標為(0,0),第四次相遇時坐標為(4,
),
∵2020÷3=673…1,
∴點P和點Q在第2020次相遇時的坐標為(4,
).
科目:初中數學 來源: 題型:
【題目】如圖(十九),用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調整。若調整木條的夾角時不破壞此木框,則任兩螺絲的距離之最大值為何?
![]()
(A) 5 (B) 6 (C) 7 (D) 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,拋物線與x軸交點坐標為A(1,0),C(-3,0),![]()
(1)若已知頂點坐標D為(-1,4)或B點(0,3),選擇適當方式求拋物線的解析式.
(2)若直線DH為拋物線的對稱軸,在(1)的基礎上,求線段DK的長度,并求△DBC的面積.
(3)將圖(2)中的對稱軸向左移動,交x軸于點p(m,0)(-3<m<-1),與線段BC、拋物線的交點分別為點K、Q,用含m的代數式表示QK的長度,并求出當m為何值時,△BCQ的面積最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫縱坐標分別為整數的點,其順序按圖中“→”方向排列,如(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→,…,根據這個規律,第2019個點的坐標為______.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點M在CD邊上,點N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點E,連接BE,AC,交于F點.
(1) ①依題意補全圖形;
②求證:BE⊥AC.
(2)請探究線段BE,AD,CN所滿足的等量關系,并證明你的結論.
(3)設AB=1,若點M沿著線段CD從點C運動到點D,則在該運動過程中,線段EN所掃過的面積為______________(直接寫出答案).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD的對角線相交于點O.DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的而積為
,求AC的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點C、D,與邊BC相交于點F,OA與CD相交于點E,連接FE并延長交AC邊于點G. ![]()
(1)求證:DF∥AO;
(2)若AC=6,AB=10,求CG的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com