【題目】近段時間,“共享單車”非常流行,小凱想了解學(xué)校八年級學(xué)生每周平均騎車時間的情況,隨機(jī)抽查了學(xué)校八年級x名同學(xué),對其每周平均騎車時間進(jìn)行統(tǒng)計.繪制了如下條形統(tǒng)計圖(圖﹣)和扇形統(tǒng)計圖(圖二):
![]()
(1)根據(jù)以上信息回答下列問題:①x=_____;②求扇形統(tǒng)計圖中騎車時間為5小時的扇形圓心角的度數(shù);③補全條形統(tǒng)計圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù).
【答案】(1)①60;②30°;③補圖見解析;(2)眾數(shù)為3小時;中位數(shù)為3小時;平均數(shù)為2.75小時.
【解析】
(1)①仔細(xì)閱讀圖形信息,得到騎車時間為2小時的人數(shù)以及所占百分比,結(jié)合條形統(tǒng)計圖中的數(shù)據(jù)即可求出x的值;
②由條形統(tǒng)計圖可知騎車時間5小時人數(shù),再結(jié)合總?cè)藬?shù)即可求出騎車時間騎車時間為5小時的扇形圓心角的度數(shù);
③要補全條形統(tǒng)計圖,求出第三組的人數(shù),用抽取的樣本總量減去其它幾組的人數(shù),即可得到,據(jù)此補全條形統(tǒng)計圖.
(2)根據(jù)題目信息及統(tǒng)計圖結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的定義即可求解.
解:(1)①
②扇形統(tǒng)計圖中騎車時間為5小時的扇形圓心角的度數(shù)為360°×
=30°;
③3小時的人數(shù)為60﹣(10+15+10+5)=20,
補全圖形如下:
![]()
故答案為:60;
(2)這組數(shù)據(jù)的眾數(shù)為3小時,中位數(shù)為第30、31個數(shù)據(jù)的平均數(shù),即中位數(shù)為3小時;平均數(shù)為=
=2.75小時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,某人分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度。(結(jié)果精確到0.1m)(參考數(shù)據(jù)
≈1.41,
≈1.73)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8×8正方形網(wǎng)格中,點A、B、C和O都為格點.
(1)利用位似作圖的方法,以點O為位似中心,可將格點三角形ABC擴(kuò)大為原來的2倍.請你在網(wǎng)格中完成以上的作圖(點A、B、C的對應(yīng)點分別用A′、B′、C′表示);
(2)當(dāng)以點O為原點建立平面坐標(biāo)系后,點C的坐標(biāo)為(﹣1,2),則A′、B′、C′三點的坐標(biāo)分別為:A′: B′: C′: .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x、y是實數(shù)且滿足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:
的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2
,則BC= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(2,2),點C是線段OA上的一個動點(不運動至O,A兩點),過點C作CD⊥x軸,垂足為D,以CD為邊在右作正方形CDEF,連接AF并延長交x軸的正半軸于點B,連接OF,設(shè)OD=t.
(1)求
的值;
(2)用含t的代數(shù)式表示△OAB的面積S;
(3)是否存在點B,使以B,E,F(xiàn)為頂點的三角形與△OEF相似?若存在,請求出所有滿足要求的B點的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=
(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤
的解集.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=
x+b都與雙曲線y=
交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時,不等式
x+b>
的解集;
(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標(biāo).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com