【題目】設(shè)函數(shù)
,
,其中
為實(shí)數(shù).
(1)若
在
上是單調(diào)減函數(shù),且
在
上有最小值,求
的取值范圍;
(2)若
在
上是單調(diào)增函數(shù),試求
的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
【答案】(1)![]()
(2)當(dāng)
或
時(shí),
的零點(diǎn)個(gè)數(shù)為1;當(dāng)
時(shí),
的零點(diǎn)個(gè)數(shù)為2.
【解析】
(1)∵
,考慮到函數(shù)
的定義域?yàn)?/span>
,故
,進(jìn)而解得
,即
在
上是單調(diào)減函數(shù). 同理,
在
上是單調(diào)增函數(shù).
由于
在
是單調(diào)減函數(shù),故
,從而
,即
.
令
,得
,當(dāng)
時(shí),
;當(dāng)
時(shí),
,
又
在
上有最小值,所以
,即
,
綜上所述,
.
(2)當(dāng)
時(shí),
必是單調(diào)增函數(shù);當(dāng)
時(shí),令
,
解得
,即
,
∵
在
上是單調(diào)函數(shù),類(lèi)似(1)有
,即
,
綜合上述兩種情況,有
.
①當(dāng)
時(shí),由
以及
,得
存在唯一的零點(diǎn);
②當(dāng)
時(shí),由于
,
,且函數(shù)
在
上的圖象不間斷,∴
在
是單調(diào)增函數(shù),∴
在
上存在零點(diǎn). 另外,當(dāng)
時(shí),
,則
在
上是單調(diào)增函數(shù),
只有一個(gè)零點(diǎn).
③當(dāng)
時(shí),令
,解得
.
當(dāng)
時(shí),
;當(dāng)
時(shí),
. ∴
是
的最大值點(diǎn),且最大值為
.
1)當(dāng)
,即
時(shí),
有一個(gè)零點(diǎn)
.
2)當(dāng)
,即
時(shí),
有兩個(gè)零點(diǎn). 實(shí)際上,對(duì)于
,由于
,
,且函數(shù)
在
上的圖象不間斷,∴
在
上存在零點(diǎn).
另外,當(dāng)
時(shí),
,故
在
上是單調(diào)增函數(shù),∴
在
上有一個(gè)零點(diǎn).
下面需要考慮
在
上的情況,先證
,
為此,我們要證明:當(dāng)
時(shí),
,設(shè)
,則
,再設(shè)
,則
.
當(dāng)
時(shí),
,∴
在
上是單調(diào)增函數(shù),
故當(dāng)
時(shí),
,從而
在
上是單調(diào)增函數(shù),進(jìn)而當(dāng)
時(shí),
,即當(dāng)
時(shí),
.
當(dāng)
,即
時(shí),
,又
,且函數(shù)![]()
在
的圖象不間斷,∴
在
上存在零點(diǎn).
又當(dāng)
時(shí),
,故
在
是單調(diào)減函數(shù),所以,
在
上只有一個(gè)零點(diǎn).
綜上所述,當(dāng)
或
時(shí),
的零點(diǎn)個(gè)數(shù)為1;當(dāng)
時(shí),
的零點(diǎn)個(gè)數(shù)為2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA=1,PC=3,BC=2,sin∠PCA
,E,F,G分別為線(xiàn)段的PC,PB,AB中點(diǎn),且BE
.
![]()
(1)求證:AB⊥BC;
(2)若M為線(xiàn)段BC上一點(diǎn),求三棱錐M﹣EFG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,我市某居民小區(qū)擬在邊長(zhǎng)為1百米的正方形地塊
上劃出一個(gè)三角形地塊
種植草坪,兩個(gè)三角形地塊
與
種植花卉,一個(gè)三角形地塊
設(shè)計(jì)成水景噴泉,四周鋪設(shè)小路供居民平時(shí)休閑散步,點(diǎn)
在邊
上,點(diǎn)
在邊
上,記
.
![]()
(1)當(dāng)
時(shí),求花卉種植面積
關(guān)于
的函數(shù)表達(dá)式,并求
的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求
,請(qǐng)?zhí)骄?/span>
是否為定值,若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=0,an+1=an+6n+3,數(shù)列{bn}滿(mǎn)足bn=n
,則數(shù)列{bn}的最大項(xiàng)為第_____項(xiàng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題
①四面體
中,
,
,則![]()
②已知雙曲線(xiàn)
的兩條漸近線(xiàn)的夾角為
,則雙曲線(xiàn)的離心率為2
③若正數(shù)
和
滿(mǎn)足
,則![]()
④向量
,若存在實(shí)數(shù)
,使得
,則![]()
其中真命題的序號(hào)是______(寫(xiě)出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是棱長(zhǎng)為2的正方形,E為AD的中點(diǎn),以CE為折痕把△DEC折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且點(diǎn)P的射影O落在線(xiàn)段AC上.
(1)求
;
(2)求幾何體P﹣ABCE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)為
(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為
;
(1)寫(xiě)出曲線(xiàn)C的普通方程和直線(xiàn)l的參數(shù)方程;
(2)設(shè)點(diǎn)P(m,0),若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),且|PA|
|PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校的
名高三學(xué)生參加了天一大聯(lián)考,為了分析此次聯(lián)考數(shù)學(xué)學(xué)科的情況,現(xiàn)隨機(jī)從中抽取
名學(xué)生的數(shù)學(xué)成績(jī)(滿(mǎn)分:
分),并繪制成如圖所示的莖葉圖.將成績(jī)低于
分的稱(chēng)為“不及格”,不低于
分的稱(chēng)為“優(yōu)秀”,其余的稱(chēng)為“良好”.根據(jù)樣本的數(shù)字特征估計(jì)總體的情況.
![]()
(1)估算此次聯(lián)考該校高三學(xué)生的數(shù)學(xué)學(xué)科的平均成績(jī).
(2)估算此次聯(lián)考該校高三學(xué)生數(shù)學(xué)成績(jī)“不及格”和“優(yōu)秀”的人數(shù)各是多少.
(3)在國(guó)家扶貧政策的倡導(dǎo)下,該地教育部門(mén)提出了教育扶貧活動(dòng),要求對(duì)此次數(shù)學(xué)成績(jī)“不及格”的學(xué)生分兩期進(jìn)行學(xué)業(yè)輔導(dǎo):一期由優(yōu)秀學(xué)生進(jìn)行一對(duì)一幫扶輔導(dǎo),二期由老師進(jìn)行集中輔導(dǎo).根據(jù)實(shí)踐總結(jié),優(yōu)秀學(xué)生進(jìn)行一對(duì)一輔導(dǎo)的轉(zhuǎn)化率為
;老師集中輔導(dǎo)的轉(zhuǎn)化率為
,試估算經(jīng)過(guò)兩期輔導(dǎo)后,該校高三學(xué)生中數(shù)學(xué)成績(jī)?nèi)匀徊患案竦娜藬?shù).
注:轉(zhuǎn)化率![]()
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開(kāi)帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來(lái)了一定的增長(zhǎng),某紀(jì)念商品店的銷(xiāo)售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷(xiāo)售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過(guò)4萬(wàn)盧布的顧客定義為”足球迷”,消費(fèi)金額不超過(guò)4萬(wàn)盧布的顧客定義為“非足球迷”。
消費(fèi)金額/萬(wàn)盧布 |
|
|
|
|
|
| 合計(jì) |
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;
(2)該紀(jì)念品商店的銷(xiāo)售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類(lèi)型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再?gòu)倪@5人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com