【題目】已知
是曲線
上動(dòng)點(diǎn)以及定點(diǎn)
,![]()
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)求
面積的最小值,并求出相應(yīng)的點(diǎn)的坐標(biāo).
【答案】(1)
;(2)
的面積最小值為1,此時(shí)點(diǎn)
坐標(biāo)為
.
【解析】
(1)求得導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,即可求得斜率和切點(diǎn)坐標(biāo),根據(jù)點(diǎn)斜式即可寫出切線方程;
(2)由
坐標(biāo)即可求得直線
方程, 當(dāng)點(diǎn)P為與
平行且且與曲線
相切的直線的切點(diǎn)時(shí),
面積的最小值,根據(jù)導(dǎo)數(shù)的幾何意義即可求得切點(diǎn),利用點(diǎn)到直線距離公式即可求得P到AB的距離,進(jìn)而求得面積.
解:
,
,
.
(1)當(dāng)
,
,
,即切點(diǎn)為
,切線方程為
,化簡(jiǎn)得:
.
(2)直線
的方程為:
,設(shè)與
平行且與曲線
相切的直線為
即
,解得:
,則切點(diǎn)為
,即點(diǎn)
坐標(biāo)為
時(shí),
的面積最小,
,
到直線
:
的距離為
,所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著我市經(jīng)濟(jì)的快速發(fā)展,政府對(duì)民生越來(lái)越關(guān)注市區(qū)現(xiàn)有一塊近似正三角形的土地
(如圖所示),其邊長(zhǎng)為2百米,為了滿足市民的休閑需求,市政府?dāng)M在三個(gè)頂點(diǎn)處分別修建扇形廣場(chǎng),即扇形
和
,其中
與
、
分別相切于點(diǎn)
,且
與
無(wú)重疊,剩余部分(陰影部分)種植草坪.設(shè)
長(zhǎng)為
(單位:百米),草坪面積為
(單位:萬(wàn)平方米).
![]()
(1)試用
分別表示扇形
和
的面積,并寫出
的取值范圍;
(2)當(dāng)
為何值時(shí),草坪面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中四邊形
為正方形,
分別為
的中點(diǎn).在此幾何體中,給出下列結(jié)論,其中正確的結(jié)論是( )
![]()
A.平面
平面
B.直線
平面![]()
C.直線
平面
D.直線
平面![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABCA1B1C1中(側(cè)棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=
,D 是A1B1的中點(diǎn).
![]()
(1)求證:C1D⊥平面AA1B1B;
(2)當(dāng)點(diǎn)F 在BB1上的什么位置時(shí),AB1⊥平面C1DF ?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,PA垂直于⊙O所在的平面,M為圓周上任意一點(diǎn),AN⊥PM,N為垂足.
![]()
(1)求證:AN⊥平面PBM;
(2)若AQ⊥PB,垂足為Q,求證:NQ⊥PB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高二年級(jí)組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)
的學(xué)生選擇自行打車,自行打車的平均時(shí)間為
(單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受
影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:
(1)當(dāng)
在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車的平均時(shí)間?
(2)求該校學(xué)生參加考試平均時(shí)間
的表達(dá)式:討論
的單調(diào)性,并說(shuō)明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為
(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,四邊形
為正方形,
平面
,
,
是
上一點(diǎn),且
.
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐
中,
和
是邊長(zhǎng)為
的等邊三角形,
,
分別是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com