【題目】設(shè)f(x)=lg
,g(x)=ex+
,則 ( )
A.f(x)與g(x)都是奇函數(shù)
B.f(x)是奇函數(shù),g(x)是偶函數(shù)
C.f(x)與g(x)都是偶函數(shù)
D.f(x)是偶函數(shù),g(x)是奇函數(shù)
【答案】B
【解析】解:首先,f(x)的定義域為(﹣∞,﹣1)∪(1,+∞),g(x)的定義域是R,兩個函數(shù)的定義域都關(guān)于原點對稱
對于f(x),可得f(﹣x)=lg
=lg
∴f(﹣x)+f(x)=lg(
×
)=lg1=0
由此可得:f(﹣x)=﹣f(x),可得f(x)是奇函數(shù);
對于g(x),可得g(﹣x)=
=
+ex
∴g(﹣x)=g(x),g(x)是定義在R上的偶函數(shù)
故選:B
【考點精析】利用函數(shù)的奇偶性對題目進(jìn)行判斷即可得到答案,需要熟知偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在獨立完成課本上的例題:“求證:
+
<2
”后,又進(jìn)行了探究,發(fā)現(xiàn)下面的不等式均成立.
+
<2
+
<2
+
<2
+
<2
,
+
≤2
.
(1)請根據(jù)上述不等式歸納出一個一般性的不等式;(用字母表示)
(2)請用合適的方法證明你寫出的不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ![]()
(1)當(dāng)x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)
的圖象上所有點的橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變),再將所得的圖象向左平移
個單位長度后得到函數(shù)
的圖象.
(Ⅰ)寫出函數(shù)
的解析式;
(Ⅱ)若對任意
,
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)求實數(shù)
和正整數(shù)
,使得
在
上恰有
個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2)有如下結(jié)論
1)f(x1+x2)=f(x1)f(x2)
2)f(x1x2)=f(x1)+f(x2)
3)
>0
4)f(
)<
5)f(
)>
6)f(﹣x)=f(x).
當(dāng)f(x)=lgx時,上述結(jié)論正確的序號為 . (注:把你認(rèn)為正確的命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對一切
恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)a的取值范圍( )。
A.![]()
B.B、
C.C、
D.a≥-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當(dāng)a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最小.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com