【題目】近年電子商務(wù)蓬勃發(fā)展,
年某網(wǎng)購平臺(tái)“雙
”一天的銷售業(yè)績高達(dá)
億元人民幣,平臺(tái)對每次成功交易都有針對商品和快遞是否滿意的評價(jià)系統(tǒng).從該評價(jià)系統(tǒng)中選出
次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購者對商品的滿意率為
,對快遞的滿意率為
,其中對商品和快遞都滿意的交易為
次.
(1)根據(jù)已知條件完成下面的
列聯(lián)表,并回答能否有
的把握認(rèn)為“網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?
對快遞滿意 | 對快遞不滿意 | 合計(jì) | |
對商品滿意 |
| ||
對商品不滿意 | |||
合計(jì) |
|
(2)若將頻率視為概率,某人在該網(wǎng)購平臺(tái)上進(jìn)行的
次購物中,設(shè)對商品和快遞都滿意的次數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望
.
附:
(其中
為樣本容量)
|
|
|
|
|
|
|
|
|
|
|
|
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某運(yùn)動(dòng)員從A市出發(fā)沿海岸一條筆直公路以每小時(shí)15km的速度向東進(jìn)行長跑訓(xùn)練,長跑開始時(shí),在A市南偏東方向距A市75km,且與海岸距離為45km的海上B處有一艘劃艇與運(yùn)動(dòng)員同時(shí)出發(fā),要追上這位運(yùn)動(dòng)員.
![]()
(1)劃艇至少以多大的速度行駛才能追上這位運(yùn)動(dòng)員?
(2)求劃艇以最小速度行駛時(shí)的行駛方向與
所成的角.
(3)若劃艇每小時(shí)最快行駛11.25km,劃艇全速行駛,應(yīng)沿何種路線行駛才能盡快追上這名運(yùn)動(dòng)員,最快需多長時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓
經(jīng)過伸縮變換
后得到曲線
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線
的直角坐標(biāo)方程及直線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
是
上一動(dòng)點(diǎn),求點(diǎn)
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
.
(1)當(dāng)
時(shí),求曲線在
處的切線方程;
(2)過點(diǎn)
作曲線的切線,若所有切線的斜率之和為1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列
中,
,![]()
(I)求
,
,
的值,由此猜想數(shù)列
的通項(xiàng)公式:
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
:
的離心率為
,點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)已知
與
為平面內(nèi)的兩個(gè)定點(diǎn),過
點(diǎn)的直線
與橢圓
交于
,
兩點(diǎn),求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+
)(A>0,ω>0,|
|<
)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+ | 0 |
| π |
| 2π |
x |
|
| |||
Asin(ωx+ | 0 | 5 | -5 | 0 |
(1)請將上表數(shù)據(jù)補(bǔ)充完整,并求出函數(shù)f(x)的解析式;
(2)將y=f(x)的圖象向左平移
個(gè)單位,得到函數(shù)y=g(x)的圖象.若關(guān)于x的方程g(x)-m=0在區(qū)間[0,
]上有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若函數(shù)
在
處取得極值,求實(shí)數(shù)
的值;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(3)討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com