【題目】總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( )
![]()
A.23B.21C.35D.32
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)P與點(diǎn)
的距離比它到直線
的距離小1.
(1)求動點(diǎn)P的軌跡C的方程;
(2)設(shè)P為直線
上任一點(diǎn),過點(diǎn)P作曲線C的切線
,
,切點(diǎn)分別為A,B,直線
,
與y軸分別交于M,N兩點(diǎn),點(diǎn)
、
的縱坐標(biāo)分別為m,n,求證:m與n的乘積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較兩種治療某病毒的藥(分別稱為甲藥,乙藥)的療效,某醫(yī)療團(tuán)隊隨機(jī)地選取了服用甲藥的患者和服用乙藥的患者進(jìn)行研究,根據(jù)研究的數(shù)據(jù),繪制了如圖1等高條形圖
.![]()
(1)根據(jù)等高條形圖,判斷哪一種藥的治愈率更高,不用說明理由;
(2)為了進(jìn)一步研究兩種藥的療效,從服用甲藥的治愈患者和服用乙藥的治愈患者中,分別抽取了10名,記錄他們的治療時間(單位:天),統(tǒng)計并繪制了如圖2莖葉圖,從莖葉圖看,哪一種藥的療效更好,并說明理由;
(3)標(biāo)準(zhǔn)差s除了可以用來刻畫一組數(shù)據(jù)的離散程度外,還可以刻畫每個數(shù)據(jù)偏離平均水平的程度,如果出現(xiàn)了治療時間在(
3s,
3s)之外的患者,就認(rèn)為病毒有可能發(fā)生了變異,需要對該患者進(jìn)行進(jìn)一步檢查,若某服用甲藥的患者已經(jīng)治療了26天還未痊愈,請結(jié)合(2)中甲藥的數(shù)據(jù),判斷是否應(yīng)該對該患者進(jìn)行進(jìn)一步檢查?
參考公式:s
,
參考數(shù)據(jù):
48.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正六棱錐
中,底面邊長和側(cè)棱分別是2和4,
,
分別是
和
的中點(diǎn),給出下面三個判斷:(1)
和
所成的角的余弦值為
;(2)
和底面所成的角是
;(3)平面
平面
;其中判斷正確的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,關(guān)于函數(shù)
有下列結(jié)論:
①
,
;
②函數(shù)
的圖象是中心對稱圖形,且對稱中心是
;
③若
是
的極大值點(diǎn),則
在區(qū)間
單調(diào)遞減;
④若
是
的極小值點(diǎn),且
,則
有且僅有一個零點(diǎn).
其中正確的結(jié)論有________(填寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的逐步提高,人們對文娛活動的需求與日俱增,其中觀看電視就是一種老少皆宜的娛樂活動.但是我們在觀看電視娛樂身心的同時,也要注意把握好觀看時間,近期研究顯示,一項久坐的生活指標(biāo)——看電視時間,是導(dǎo)致視力下降的重要因素,即看電視時間越長,視力下降的風(fēng)險越大.研究者在某小區(qū)統(tǒng)計了每天看電視時間
(單位:小時)與視力下降人數(shù)
的相關(guān)數(shù)據(jù)如下:
編號 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1.5 | 2 | 2.5 | 3 |
| 12 | 16 | 22 | 24 | 26 |
(1)請根據(jù)上面的數(shù)據(jù)求
關(guān)于
的線性回歸方程
(2)我們用(1)問求出的線性回歸方程
的
估計回歸方程
,由于隨機(jī)誤差
,所以
是
的估計值,
成為點(diǎn)(
,
)的殘差.
①填寫下面的殘差表,并繪制殘差圖;
編號 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1.5 | 2 | 2.5 | 3 |
| 12 | 16 | 22 | 24 | 26 |
|
![]()
②若殘差圖所在帶狀區(qū)域?qū)挾炔怀^4,我們則認(rèn)為該模型擬合精度比較高,回歸方程的預(yù)報精度較高,試根據(jù)①繪制的殘差圖分折該模型擬合精度是否比較高?
附:回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐
中,
,
,
,
,點(diǎn)D在線段AB上,且滿足
.
![]()
(1)求證:![]()
(2)當(dāng)平面
平面
時,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體P﹣ABC中,PA
,PB=PC=AB=AC=2,BC=2
,動點(diǎn)Q在△ABC的內(nèi)部(含邊界),設(shè)∠PAQ=α,二面角P﹣BC﹣A的平面角的大小為β,△APQ和△BCQ的面積分別為S1和S2,且滿足
,則S2的最大值為_____.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com