【題目】已知
的圓心為
的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(1)求動圓圓心P的軌方跡方程;
(2)設(shè)A,B分別為曲線P與x軸的左右兩個交點,過點
的直線
與曲線P交于C,D兩點,若
,求直線
的方程.
【答案】
(1)解:設(shè)動圓P的半徑為r,則
兩式相,得
,由橢圓定義知,點
的軌跡是以
為焦點,焦距為2實軸長為4的橢圓,其方程為
.
(2)解:當(dāng)直線的斜率不存在時,直線l的方程為x=1,則
,則
,當(dāng)直線的斜率存在時,設(shè)直線
的方程為
,設(shè)
,朕立
,消去y得
,則有
, ![]()
![]()
.由已知,得
,解得
.故直線
的方程為
.
【解析】(1)由題意結(jié)合橢圓的定義可知,點P的軌跡是以M、N為焦點,焦距為2實軸長為4的橢圓,結(jié)合已知條件即可求出動圓圓心P的軌跡方程。(2)由題意分情況討論:當(dāng)直線斜率不存在時由已知可得不成立。當(dāng)直線的斜率存在時利用點斜式設(shè)出直線的方程,聯(lián)立直線和橢圓的方程消去y得到關(guān)于x 的一元二次方程,借助韋達(dá)定理求出 x1 + x2、x1x2的解析式,根據(jù)向量的數(shù)量積運(yùn)算公式
整理已知的式子
轉(zhuǎn)化為關(guān)于k的方程,解出k的值即可然后再利用斜截式求出直線的方程。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=7,
且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)令
,n=1,2,…,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2(1+3sin2θ)=4,曲線C2:
(θ為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)極坐標(biāo)系中兩點A(ρ1 , θ0),B(ρ2 , θ0+
)都在曲線C1上,求
+
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)
(噸),一位居民的月用水量不超過
的部分按平價收費,超出
的部分按議價收費,為了了解居民用水情況,通過抽祥,獲得了某年100位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照
分成
組,制成了如圖所示的頻率分布直方圖.![]()
(1)求直方圖中a的值;
(2)若該市有110萬居民,估計全市居民中月均用水量不低于
噸的人數(shù),并說明理由;
(3)若該市政府希望使80%的居民每月的用水量不超過標(biāo)準(zhǔn)
(噸),估計x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(
-x)sin x-
cos2x.
(1)求f(x)的最小正周期和最大值;
(2)討論f(x)在(
)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(2x+
)+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移
個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某奶茶店對某時間段的奶茶銷售量及其價格進(jìn)行調(diào)查,統(tǒng)計出售價
元和銷售量
杯之間的一組數(shù)據(jù)如下表所示:
價格 | 5 | 5.5 | 6.5 | 7 |
銷售量 | 12 | 10 | 6 | 4 |
通過分析,發(fā)現(xiàn)銷售量
對奶茶的價格
具有線性相關(guān)關(guān)系.
(1)求銷售量
對奶茶的價格
的回歸直線方程;
(2)欲使銷售量為13杯,則價格應(yīng)定為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年一交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數(shù)y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
=
x+
;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到110km/h時,可能發(fā)生的交通事故次數(shù).
(附:b=
,
=
-
,其中
,
為樣本平均值) ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com