【題目】如圖,記棱長為1的正方體
,以
各個面的中心為頂點的正八面體為
,以
各面的中心為頂點的正方體為
,以
各個面的中心為頂點的正八面體為
,……,以此類推得一系列的多面體
,設(shè)
的棱長為
,則數(shù)列
的各項和為________.
![]()
【答案】![]()
【解析】
根據(jù)條件求出
,
,
,
,然后歸納得到:奇數(shù)項與偶數(shù)項都是等比數(shù)列,然后求和即可.
正方體
各面中心為頂點的凸多面體
為正八面體,
它的中截面(垂直平分對頂點連線的界面)是正方形,
該正方形對角線的長度等于正方體的棱長,
所以
,
以
各個面的中心為頂點的凸多面體
為正方體,
正方體
面對角線長等于
棱長的
,(正三角形中心到對邊的距離等于高的
),
因此對角線為
,所以
,
以上方式類推得到
,
,
,
所以
各項為
,
奇數(shù)項是以
為首項,以
為公比的等比數(shù)列,
偶數(shù)項是以
為首項,以
為公比的等比數(shù)列,
所以數(shù)列
的各項和為
.
故答案為:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點
為圓心,1為半徑的圓相切,又知C的一個焦點與P關(guān)于直線
對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線
與雙曲線C的左支交于A、B兩點,另一直線
經(jīng)過
及AB的中點,求直線
在y軸上的截距b的取值范圍;
(3)若Q是雙曲線C上的任一點,
、
為雙曲線C的左、右兩個焦點,從
引
的角平分線的垂線,垂足為N,試求點N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球是世界普及率最高的運動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,社會調(diào)查小組得到如下統(tǒng)計數(shù)據(jù):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學(xué)校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計算y與x的相關(guān)系數(shù)r,并說明y與x的線性相關(guān)性強弱.
(已知:
,則認(rèn)為y與x線性相關(guān)性很強;
,則認(rèn)為y與x線性相關(guān)性一般;
,則認(rèn)為y與x線性相關(guān)性較):
(2)求y關(guān)于x的線性回歸方程,并預(yù)測A地區(qū)2020年足球特色學(xué)校的個數(shù)(精確到個).
參考公式和數(shù)據(jù):
,
![]()
![]()
,
![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(理)已知數(shù)列
滿足
(
),首項
.
(1)求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
;
(3)數(shù)列
滿足
,記數(shù)列
的前
項和為
,
是△ABC的內(nèi)角,若
對于任意
恒成立,求角
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生中喜愛看綜藝節(jié)目的有18人,體育節(jié)目的有27人,時政節(jié)目的有9人,現(xiàn)采取分層抽樣的方法從這些學(xué)生中抽取6名學(xué)生.
(Ⅰ)求應(yīng)從喜愛看綜藝節(jié)目,體育節(jié)目,時政節(jié)目的學(xué)生中抽取的學(xué)生人數(shù);
(Ⅱ)若從抽取的6名學(xué)生中隨機抽取2人分作一組,
(1)列出所有可能的結(jié)果;
(2)求抽取的2人中有1人喜愛綜藝節(jié)目1人喜愛體育節(jié)目的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加
項目生產(chǎn)的工人為
人,平均每人每年創(chuàng)造利潤
萬元.根據(jù)現(xiàn)實的需要,從
項目中調(diào)出
人參與
項目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤
萬元(
),
項目余下的工人每人每年創(chuàng)造利圖需要提高![]()
(1)若要保證
項目余下的工人創(chuàng)造的年總利潤不低于原來
名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加
項目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從
項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的
時,才能使得
項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量
萬件(生產(chǎn)量與銷售量相等)與促銷費用
萬元滿足
(其中
,
為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本
萬元(不含促銷費用),產(chǎn)品的銷售價格定為
元
件.
(1)將該產(chǎn)品的利潤
萬元表示為促銷費用
萬元的函數(shù);
(2)促銷費用投入多少萬元時,該公司的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖是某校高三(1)班的一次數(shù)學(xué)知識競賽成績的莖葉圖(圖中僅列出
,
的數(shù)據(jù))和頻率分布直方圖.
![]()
(1)求分?jǐn)?shù)在
的頻率及全班人數(shù);
(2)求頻率分布直方圖中的
;
(3)若要從分?jǐn)?shù)在
之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在
之間的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com