【題目】日照一中為了落實“陽光運動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價為
,草坪的每平方米的造價為
(k為正常數(shù)).設(shè)總造價T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價T最低.
![]()
【答案】(1)
(2)12米或18米
【解析】
試題(1)根據(jù)題意,分析可得,欲求健身場地占地面積,只須求出圖中矩形的面積即可,再結(jié)合矩形的面積計算公式求出它們的面積即得,最后再根據(jù)二次函數(shù)的性質(zhì)得出其范圍;
(2)對于(1)所列不等式,考慮到其中兩項之積為定值,可利用基本不等式求它的最大值,從而解決問題.
解:(1)在Rt△PMC中,顯然|MC|=30﹣x,∠PCM=60°
∴|PM|=|MC|tan∠PCM=
(30﹣x),…2分
矩形AMPN的面積S=|PM||MC|=
x(30﹣x),x∈[10,20]…4分
于是200
≤S≤225
為所求.…6分
(2)矩形AMPN健身場地造價T1=37k
…7分
又△ABC的面積為450
,即草坪造價T2=
S)…8分
由總造價T=T1+T2,∴T=25k(
+
),200
≤S≤225
.…10分
∴T=25k(
+
),200
≤S≤225![]()
∵
+
≥12
,…11分
當(dāng)且僅當(dāng)
=
即S=216
時等號成立,…12分
此時
x(30﹣x)=216
,解得x=12或x=18,
所以選取|AM|的長為12米或18米時總造價T最低.…14分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為
的函數(shù)滿足
,當(dāng)
時,
,設(shè)
在
上的最大值為
,且
的前n項和為
,若
對任意的正整數(shù)n均成立,則實數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗》國家標(biāo)準(zhǔn),新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復(fù)試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:
![]()
該函數(shù)模型如下:
![]()
根據(jù)上述條件,回答以下問題:
(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達(dá)到最大值?最大值是多少?
(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)
(參數(shù)數(shù)據(jù):
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的導(dǎo)函數(shù)為
.
(1)若
對任意
恒成立,求實數(shù)
的取值范圍;
(2)若函數(shù)
的極值為正數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域為
.
(1)若
是單調(diào)函數(shù),且有零點,求實數(shù)a的取值范圍;
(2)若
,求
的值域;
(3)若
恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高三學(xué)生的視力情況,隨機地抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視力在4.6到5.0之間的頻率為b,則a,b的值分別為( )
![]()
A.0.27,78B.54,0.78C.27,0.78D.54,78
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x
,g(x)=(4﹣lnx)lnx+b(b∈R).
(1)若f(x)>0,求實數(shù)x的取值范圍;
(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求實數(shù)b的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形
,中心角
(
).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形
,其中點
,
分別在邊
和
上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求
的最大值;
(2)試問:當(dāng)
為多少時,年總收入最大?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com