【題目】某次足球比賽共12支球隊(duì)參加,分三個(gè)階段進(jìn)行.
(1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊(duì)進(jìn)行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;
(2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場(chǎng)交叉淘汰賽(每?jī)申?duì)主客場(chǎng)各賽一場(chǎng))決出勝者;
(3)決賽:兩個(gè)勝隊(duì)參加決賽一場(chǎng),決出勝負(fù).
問(wèn)全程賽程共需比賽多少場(chǎng)?
【答案】35場(chǎng)
【解析】(1)小組賽中每組6隊(duì)進(jìn)行單循環(huán)比賽,就是6支球隊(duì)的任兩支球隊(duì)都要比賽一次,所需比賽的場(chǎng)次即為從6個(gè)元素中任取2個(gè)元素的組合數(shù),所以小組賽共要比賽
(場(chǎng)).
(2)半決賽中甲組第一名與乙組第二名(或乙組第一名與甲組第二名)主客場(chǎng)各賽一場(chǎng),所需比賽的場(chǎng)次即為從2個(gè)元素中任取2個(gè)元素的排列數(shù),所以半決賽共要比賽
(場(chǎng)).
(3)決賽只需比賽1場(chǎng),即可決出勝負(fù).
所以全部賽程共需比賽30+4+1=35(場(chǎng)).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形
的邊長(zhǎng)為
,
,
,將菱形
沿對(duì)角線
折起,得到三棱錐
,點(diǎn)
是棱
的中點(diǎn),
.
![]()
(
)求證:
平面
.
(
)求證:平面
平面
.
(
)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是城市交通的一道亮麗的風(fēng)景,給人們短距離出行帶來(lái)了很大的方便.某!眴诬嚿鐖F(tuán)”對(duì)
市年齡在
歲騎過(guò)共享單車的人群隨機(jī)抽取
人調(diào)查,騎行者的年齡情況如下圖顯示。
![]()
(1)已知
年齡段的騎行人數(shù)是
兩個(gè)年齡段的人數(shù)之和,請(qǐng)估計(jì)騎過(guò)共享單車人群的年齡的中位數(shù);
(2)從
兩個(gè)年齡段騎過(guò)共享單車的人中按
的比例用分層抽樣的方法抽取
人,從中任選
人,求兩人都在
)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形
中,
,
邊所在直線的方程為
,點(diǎn)
在
邊所在直線上.
![]()
(
)求
邊所在直線的方程.
(
)求矩形
外接圓的方程.
(
)若過(guò)點(diǎn)
作題(
)中的圓的切線,求切線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形
中,
,
,
,
,
,
分別在
,
上,
,現(xiàn)將四邊形
沿
折起,使平面
平面
.
(Ⅰ)若
,在折疊后的線段
上是否存在一點(diǎn)
,且
,使得
平面
?若存在,求出
的值;若不存在,說(shuō)明理由;
(Ⅱ)求三棱錐
的體積的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按 1小時(shí)計(jì)算).有甲、乙兩人獨(dú)立來(lái)該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過(guò)兩小時(shí)還車的概率分別為
;兩小時(shí)以上且不超過(guò)三小時(shí)還車的概率分別為
;兩人租車時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求甲、乙兩人所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量
,求
的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn):
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點(diǎn)為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(l,2)在函數(shù)f(x)=ax3的圖象上,則過(guò)點(diǎn)A的曲線C:y=f(x)的切線方程是( 。
A. 6x﹣y﹣4=0 B. x﹣4y+7=0
C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘有一著名的尺規(guī)作圖題“倍立方問(wèn)題”:求作一個(gè)正方體,使它的體積等于已知立方體體積的2倍,倍立方問(wèn)題可以利用拋物線(可尺規(guī)作圖)來(lái)解決,首先作一個(gè)通徑為
(其中正數(shù)
為原立方體的棱長(zhǎng))的拋物線
,如圖,再作一個(gè)頂點(diǎn)與拋物線
頂點(diǎn)
重合而對(duì)稱軸垂直的拋物線
,且與
交于不同于點(diǎn)
的一點(diǎn)
,自點(diǎn)
向拋物線
的對(duì)稱軸作垂線,垂足為
,可使以
為棱長(zhǎng)的立方體的體積為原立方體的2倍.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線
的標(biāo)準(zhǔn)方程;
(2)為使以
為棱長(zhǎng)的立方體的體積為原立方體的2倍,求拋物線
的標(biāo)準(zhǔn)方程(只須以一個(gè)開(kāi)口方向?yàn)槔?/span>.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com