【題目】如圖,在四棱錐
中,
底面
,
是直角梯形,
,
,
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)求二面角
的余弦值;
(3)直線
上是否存在一點
,使得
平面
,若存在,求出
的長,若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】如圖,在三梭柱ABC-A1B1C1中,AC=BC,E,F分別為AB,A1B1的中點.
![]()
(1)求證:AF∥平面B1CE;
(2)若A1B1⊥
,求證:平面B1CE⊥平面ABC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為
,觀影人數記為
,其函數圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后
與
的函數圖象.
![]()
給出下列四種說法:
①圖(2)對應的方案是:提高票價,并提高成本;
②圖(2)對應的方案是:保持票價不變,并降低成本;
③圖(3)對應的方案是:提高票價,并保持成本不變;
④圖(3)對應的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌電腦體驗店預計全年購入
臺電腦,已知該品牌電腦的進價為
元/臺,為節約資金決定分批購入,若每批都購入
(
為正整數)臺,且每批需付運費
元,儲存購入的電腦全年所付保管費與每批購入電腦的總價值(不含運費)成正比(比例系數為
),若每批購入
臺,則全年需付運費和保管費
元.
(1)記全年所付運費和保管費之和為
元,求
關于
的函數.
(2)若要使全年用于支付運費和保管費的資金最少,則每批應購入電腦多少臺?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】α,β是兩個不重合的平面,在下列條件中,可判斷平面α,β平行的是( )
A. m,n是平面
內兩條直線,且
,![]()
B.
內不共線的三點到
的距離相等
C.
,
都垂直于平面![]()
D. m,n是兩條異面直線,
,
,且
,![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了人口規模相當的
個城市采用不同的定價方案作為試點,經過一個月的統計,發現該流量包的定價:
(單位:元/月)和購買總人數
(單位:萬人)的關系如表:
定價x(元/月) | 20 | 30 | 50 | 60 |
年輕人(40歲以下) | 10 | 15 | 7 | 8 |
中老年人(40歲以及40歲以上) | 20 | 15 | 3 | 2 |
購買總人數y(萬人) | 30 | 30 | 10 | 10 |
(Ⅰ)根據表中的數據,請用線性回歸模型擬合
與
的關系,求出
關于
的回歸方程;并估計
元/月的流量包將有多少人購買?
(Ⅱ)若把
元/月以下(不包括
元)的流量包稱為低價流量包,
元以上(包括
元)的流量包稱為高價流量包,試運用獨立性檢驗知識,填寫下面列聯,并通過計算說明是否能在犯錯誤的概率不超過
的前提下,認為購買人的年齡大小與流量包價格高低有關?
定價x(元/月) | 小于50元 | 大于或等于50元 | 總計 |
年輕人(40歲以下) | |||
中老年人(40歲以及40歲以上) | |||
總計 |
參考公式:其中
![]()
其中![]()
參考數據:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改編自中國神話故事的動畫電影《哪吒之魔童降世》自7月26日首映,在不到一個月的時間,票房收入就超過了38億元,創造了中國動畫電影的神話.小明和同學相約去電影院觀看《哪吒之魔童降世》,影院的三個放映廳分別在7:30,8:00,8:30開始放映,小明和同學大約在7:40至8:30之間到達影院,且他們到達影院的時間是隨機的,那么他們到達后等待的時間不超過10分鐘的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著移動互聯網的發展,與餐飲美食相關的手機APP軟件層出不窮.現從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統計,得到頻率分布直方圖如下.
![]()
![]()
![]()
(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達時間”為18分鐘。現從使用A款訂餐軟件的商家中“平均送達時間”不超過20分鐘的商家中隨機抽取3個商家進行市場調研,求甲商家被抽到的概率;
(2)試估計該市使用A款訂餐軟件的商家的“平均送達時間”的眾數及平均數;
(3)如果以“平均送達時間”的平均數作為決策依據,從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com