對(duì)于數(shù)列
,把
作為新數(shù)列
的第一項(xiàng),把
或
(
)作為新數(shù)列
的第
項(xiàng),數(shù)列
稱為數(shù)列
的一個(gè)生成數(shù)列.例如,數(shù)列
的一個(gè)生成數(shù)列是
.已知數(shù)列
為數(shù)列
的生成數(shù)列,
為數(shù)列
的前
項(xiàng)和.
(1)寫出
的所有可能值;
(2)若生成數(shù)列
滿足的通項(xiàng)公式為
,求
.
(1)
(2)![]()
解析試題分析:(1)列舉出數(shù)列
所有可能情況,共
種,分別計(jì)算和值為
,本題目的初步感觀生成數(shù)列
,(2)分段函數(shù)求和,注意“間斷的周期性”. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/9/1kojv3.png" style="vertical-align:middle;" />,所以間斷的周期為3,每3個(gè)作為一個(gè)“大元素”,所以先求
.再利用
求
及
的
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/a/t3sb02.png" style="vertical-align:middle;" />![]()
![]()
,所以當(dāng)
時(shí)
,當(dāng)
,![]()
試題解析:解:(1)由已知,
,
,
∴
,
由于
,
∴
可能值為
. 3分
(2)∵
.
∴
時(shí),
![]()
![]()
.
.
時(shí),![]()
;
時(shí),![]()
;
13分注:若有其它解法,請(qǐng)酌情給分】
考點(diǎn):數(shù)列求和
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的各項(xiàng)均為正數(shù),
是數(shù)列
的前n項(xiàng)和,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
的前
項(xiàng)和
,且
,
=225
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列
中,
是數(shù)列
的前
項(xiàng)和,對(duì)任意
,有
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)記
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某市2013年發(fā)放汽車牌照12萬(wàn)張,其中燃油型汽車牌照10萬(wàn)張,電動(dòng)型汽車2萬(wàn)張.為了節(jié)能減排和控制總量,從2013年開始,每年電動(dòng)型汽車牌照按50%增長(zhǎng),而燃油型汽車牌照每一年比上一年減少
萬(wàn)張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過15萬(wàn)張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列
,每年發(fā)放的電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列
,完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;
(2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開始超過200萬(wàn)張?
| | ||||
| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N*,數(shù)列{bn}滿足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求數(shù)列{an·bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
、
中,
,且當(dāng)
時(shí),
,
.記
的階乘
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求證:數(shù)列
為等差數(shù)列;
(3)若
,求
的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前n項(xiàng)和為
,且
=-n
+20n,n∈N
.
(Ⅰ)求通項(xiàng)
;
(Ⅱ)設(shè)
是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列
的通項(xiàng)公式及其前n項(xiàng)和
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com