【題目】在直三棱柱ABC — A1B1C1中,AB=AC,BB1=BC,點(diǎn)P,Q,R分別是棱BC,CC1,B1C1的中點(diǎn).
![]()
(1)求證:A1R//平面APQ;
(2)求證:直線B1C⊥平面APQ.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)先證明四邊形
是平行四邊形,然后利用線線平行可證線面平行;
(2)先證明
,
,結(jié)合線面垂直的判定定理可得直線B1C⊥平面APQ.
證明:(1)在直三棱柱
中,
且
,
因點(diǎn)
分別是棱
的中點(diǎn),所以
且
,
所以四邊形
是平行四邊形,即
且
,
又
且
,所以
且
,
即四邊形
是平行四邊形,所以
,
又
平面
,
平面
,
所以
平面
.
(2)因?yàn)橹比庵?/span>
,所以四邊形
是平行四邊形,
又因
,所以四邊形
是菱形,所以
,
又點(diǎn)
分別是棱
的中點(diǎn),
即
,所以
.
因?yàn)?/span>
,點(diǎn)
是棱
的中點(diǎn),所以
,
由直三棱柱
,知
底面
,即
,
又
平面
,
平面
,且![]()
,
所以
平面
,又
平面
,則
,
又
平面
,
平面
,且![]()
,
所以
平面
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地方政府召開全面展開新舊動(dòng)能轉(zhuǎn)換重大工程動(dòng)員大會(huì),動(dòng)員各方力量,迅速全面展開新舊動(dòng)能轉(zhuǎn)換重大工程.某企業(yè)響應(yīng)號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前、后生產(chǎn)的大量產(chǎn)品中各抽取了200件作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在
內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖所示的是設(shè)備改造前樣本的頻率分布直方圖.
![]()
(1)若設(shè)備改造后樣本的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布
,求改造后樣本中不合格品的件數(shù);
(2)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量標(biāo)值與設(shè)備改造有關(guān).
0 | 設(shè)備改造前 | 設(shè)備改造后 | 合計(jì) |
合格品件數(shù) | |||
不合格品件數(shù) | |||
合計(jì) |
附參考公式和數(shù)據(jù):
若
,則
,
.
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】管道清潔棒是通過(guò)在管道內(nèi)釋放清潔劑來(lái)清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個(gè)如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長(zhǎng)度為
的清潔棒在彎頭內(nèi)恰好處于
位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,
).
![]()
![]()
(1)請(qǐng)用角
表示清潔棒的長(zhǎng)
;
(2)若想讓清潔棒通過(guò)該彎頭,清潔下一段圓管,求能通過(guò)該彎頭的清潔棒的最大長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程是
(
是參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,其傾斜角為
.
(Ⅰ)證明直線
恒過(guò)定點(diǎn)
,并寫出直線
的參數(shù)方程;
(Ⅱ)在(Ⅰ)的條件下,若直線
與曲線
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①
,②
,③
這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,并解答.
已知等差數(shù)列
的公差為
,等差數(shù)列
的公差為
.設(shè)
分別是數(shù)列
的前
項(xiàng)和,且
, ,
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)若函數(shù)
在區(qū)間
上恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)
在區(qū)間
上有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)
的導(dǎo)函數(shù)
的圖象與函數(shù)
圖象有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
(1)若展開式中第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開式中二項(xiàng)式系數(shù)最大項(xiàng)
的系數(shù);
(2)若展開式前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開式中系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示程序框圖,若輸出的
值為
,在條件框內(nèi)應(yīng)填寫( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知曲線
與曲線
,(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線
,
的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知
與
,
的公共點(diǎn)分別為
,
,
,當(dāng)
時(shí),求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com