【題目】設(shè)A、B是拋物線
上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且
,(其中O為坐標(biāo)原點(diǎn)).
(1)求證:直線
必與x軸交于一定點(diǎn)Q,并求出此定點(diǎn)Q的坐標(biāo);
(2)過點(diǎn)Q作直線
的垂線與拋物線交于C、D兩點(diǎn),求四邊形
面積的最小值.
【答案】(1)證明見解析,
;(2)88.
【解析】
(1)設(shè)直線
的方程為
,
,聯(lián)立
消
得,
,由韋達(dá)定理得,
,根據(jù)
,得
,由此解方程即可得到本題答案;
(2)由弦長公式,得
,
,所以四邊形
的面積
,通過換元法,利用函數(shù)的單調(diào)性即可求得本題答案.
(1)證明:易知直線
的斜率不為0,設(shè)直線
的方程為
,
,
,
由
消
得,
,
則
,且
,
由
,得
,
解得,
或
(舍去),
所以
,可得
,即直線
的方程為
,
所以直線
恒過定點(diǎn)
;
(2)由(1)得,
,
同理,
,
因?yàn)?/span>
,所以四邊形
的面積![]()
,
令
(
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立),
則
,易知函數(shù)
在
上是增函數(shù),所以當(dāng)
時(shí),
取得最小值88,故四邊形
面積的最小值為88.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB=
.
(Ⅰ)若c=2a,求
的值;
(Ⅱ)若C-B=
,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了鼓勵(lì)運(yùn)動(dòng)提高所有用戶的身體素質(zhì),特推出一款運(yùn)動(dòng)計(jì)步數(shù)的軟件,所有用戶都可以通過每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動(dòng)達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動(dòng)達(dá)人”,采用按性別分層抽樣的方式抽取了100個(gè)用戶,得到如下列聯(lián)表:
運(yùn)動(dòng)達(dá)人 | 非運(yùn)動(dòng)達(dá)人 | 總計(jì) | |
男 | 35 | 60 | |
女 | 26 | ||
總計(jì) | 100 |
(1)(i)將
列聯(lián)表補(bǔ)充完整;
(ii)據(jù)此列聯(lián)表判斷,能否有
的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?
(2)從樣本中的運(yùn)動(dòng)達(dá)人中抽取7人參加“幸運(yùn)抽獎(jiǎng)”活動(dòng),通過抽獎(jiǎng)共產(chǎn)生2位幸運(yùn)用戶,求這2位幸運(yùn)用戶恰好男用戶和女用戶各一位的概率.
附:
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
為常數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)當(dāng)直線
與曲線
相切時(shí),求出常數(shù)
的值;
(2)當(dāng)
為曲線
上的點(diǎn),求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,
,![]()
![]()
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)設(shè)
是曲線
上的一個(gè)動(dòng)瞇,當(dāng)
時(shí),求點(diǎn)
到直線
的距離的最小值;
(2)若曲線
上所有的點(diǎn)都在直線
的右下方,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成面積為
的等腰直角三角形.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)直線
與橢圓交于點(diǎn)A、B,線段
的中點(diǎn)為M,射線MO與橢圓交于點(diǎn)P,點(diǎn)O為
的重心,試問:
的面積S是否為定值,若是,求出這個(gè)值;若不是,求S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.據(jù)統(tǒng)計(jì),某公司200名員工中90%的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以內(nèi)的有60人,其余的員工每天使用微信時(shí)間在一小時(shí)以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個(gè)階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.
(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出并完成2×2列聯(lián)表:
![]()
(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?
(3)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.
附:
![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若不等式
區(qū)間
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)求證: ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com