【題目】將圓
為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>
倍,得到曲線![]()
(1)求出
的普通方程;
(2)設(shè)直線
:
與
的交點(diǎn)為
,
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,求過線段
的中點(diǎn)且與
垂直的直線的極坐標(biāo)方程.
【答案】(1)
(2)![]()
【解析】試題分析:(1)本問首先應(yīng)用伸縮變換公式
,根據(jù)公式可以得到變化后的參數(shù)方程為
(
為參數(shù)),即
,于是可以根據(jù)
畫為普通方程;(2)將曲線
的普通方程與直線
的方程聯(lián)立,可以解方程組,方程組的解分別為
兩點(diǎn)坐標(biāo),于是可以求出直線
的斜率及中點(diǎn)坐標(biāo),根據(jù)垂直關(guān)系可以求出線段
的垂直平分線
的方程,然后根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式
,即得到直線
的極坐標(biāo)方程.
試題解析:(1)設(shè)
為圓上的任意一點(diǎn),在已知的變換下變?yōu)?/span>
上的點(diǎn)
,
則有 ![]()
(2)
解得:
所以
則線段
的中點(diǎn)坐標(biāo)為
,所求直線的斜率
,于是所求直線方程為
.
化為極坐標(biāo)方程得:
,即![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和記為Sn , a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}的各項(xiàng)為正,其前n項(xiàng)和為Tn , 且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解小學(xué)生的體能情況,抽取了某小學(xué)同年級部分學(xué)生進(jìn)行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個(gè)小組的頻率分別時(shí)0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率?
(2)問參加這次測試的學(xué)生人數(shù)是多少?
(3)問在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
是直角梯形,
,
,
,
是
的中點(diǎn).
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程.
在平面直角坐標(biāo)系
中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)寫出直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)已知點(diǎn)
.若點(diǎn)
的極坐標(biāo)為
,直線
經(jīng)過點(diǎn)
且與曲線
相交于
兩點(diǎn),設(shè)線段
的中點(diǎn)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
,且
,f(x)=
﹣2λ|
|(λ為常數(shù)),求:
(1)
及|
|;![]()
(2)若f(x)的最小值是
,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實(shí)數(shù)
和
,使得函數(shù)
和
對定義域內(nèi)的任意
均滿足:
,且存在
使得
,存在
使得
,則稱直線
為函數(shù)
和
的“分界線”.在下列說法中正確的是__________(寫出所有正確命題的編號).
①任意兩個(gè)一次函數(shù)最多存在一條“分界線”;
②“分界線”存在的兩個(gè)函數(shù)的圖象最多只有兩個(gè)交點(diǎn);
③
與
的“分界線”是
;
④
與
的“分界線”是
或
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
,
取一切非負(fù)實(shí)數(shù)時(shí),若
,求
的范圍;
(2)若函數(shù)
存在極大值
,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com