【題目】設
、
分別是橢圓C:
的左、右焦點,
,直線1過
且垂直于x軸,交橢圓C于A、B兩點,連接A、B、
,所組成的三角形為等邊三角形。
(1)求橢圓C的方程;
(2)過右焦點
的直線m與橢圓C相交于M、N兩點,試問:橢圓C上是否存在點P,使
成立?若存在,求出點P的坐標;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】給定橢圓
>
>0
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓
的方程和其“準圓”方程;
(2)點
是橢圓
的“準圓”上的一個動點,過點
作直線
,使得
與橢圓
都只有一個交點.求證:
⊥
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,等腰梯形MNCD中,MD∥NC,MN=
MD=2,∠CDM=60°,E為線段MD上一點,且ME=3,以EC為折痕將四邊形MNCE折起,使MN到達AB的位置,且AE⊥DC
![]()
(1)求證:DE⊥平面ABCE;
(2)求點A到平面DBE的距離
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:
=2px經過點
(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設O為原點,
,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A市某機構為了調查該市市民對我國申辦2034年足球世界杯的態度,隨機選取了140位市民進行調查,調查結果統計如下:
支持 | 不支持 | 合計 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計 | 70 | 140 |
(1)根據已知數據,把表格數據填寫完整;
(2)若在被調查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,求從這5人中隨機抽取3人至多有1人是教師的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線
的焦點為
,橢圓
的中心在原點,
為其右焦點,點
為曲線
和
在第一象限的交點,且
.
![]()
(1)求橢圓
的標準方程;
(2)設
為拋物線
上的兩個動點,且使得線段
的中點
在直線
上,
為定點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年12月18日上午10時,在人民大會堂舉行了慶祝改革開放40周年大會.40年眾志成城,40年砥礪奮進,40年春風化雨,中國人民用雙手書寫了國家和民族發展的壯麗史詩.會后,央視媒體平臺,收到了來自全國各地的紀念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在
之間,根據統計結果,做出頻率分布直方圖如下:
(Ⅰ)求這100位作者年齡的樣本平均數
和樣本方差
(同一組數據用該區間的中點值作代表);
(Ⅱ)由頻率分布直方圖可以認為,作者年齡X服從正態分布
,其中
近似為樣本平
均數
,
近似為樣本方差
.
(i)利用該正態分布,求
;
(ii)央視媒體平臺從年齡在
和
的作者中,按照分層抽樣的方法,抽出了7人參加“紀念改革開放40年圖片展”表彰大會,現要從中選出3人作為代表發言,設這3位發言者的年齡落在區間
的人數是Y,求變量Y的分布列和數學期望.附:
,若
,則
,![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com