【題目】如圖,兩個轉(zhuǎn)盤中指針落在每個數(shù)字上的機會相等,現(xiàn)同時轉(zhuǎn)動
、
兩個轉(zhuǎn)盤,停止后,指針各指向一個數(shù)字.小力和小明利用這兩個轉(zhuǎn)盤做游戲,若兩數(shù)之積為非負(fù)數(shù)則小力勝;否則,小明勝.
![]()
(1)畫樹狀圖或列表求出各人獲勝的概率。
(2)這個游戲公平嗎?說說你的理由
【答案】(1)小力獲勝的概率為
,小明獲勝的概率
;(2)不公平,理由見解析
【解析】
(1)根據(jù)題意列出表格,由表格可求出所有等可能結(jié)果以及小力獲勝和小明獲勝的情況,由此可求得兩人獲勝的概率;
(2)比較兩人獲勝的概率,即可知游戲是否公平.
解:(1)列表得:
轉(zhuǎn)盤 兩個數(shù)字之積 轉(zhuǎn)盤 |
| 0 | 2 | 1 |
1 |
| 0 | 2 | 1 |
| 2 | 0 |
|
|
| 1 | 0 |
|
|
∵由兩個轉(zhuǎn)盤各轉(zhuǎn)出一數(shù)字作積的所有可能情況有12種,每種情況出現(xiàn)的可能性相同,其中兩個數(shù)字之積為非負(fù)數(shù)有7個,負(fù)數(shù)有5個,
∴
,
.
(2)![]()
![]()
![]()
.
∴這個游戲?qū)﹄p方不公平.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點,連接CB,過C作CD⊥AB于點D,過點C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延長線于點E.
(1)求證:CE是⊙O的切線.
(2)如圖2,點F在⊙O上,且滿足∠FCE=2∠ABC,連接AF井延長交EC的延長線于點G.
①試探究線段CF與CD之間滿足的數(shù)量關(guān)系;
②若CD=4,BD=2,求線段FG的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線
與x軸、y軸分別交于點A、B,拋物線
經(jīng)過點A,將點B向右平移5個單位長度,得到點C,若拋物線與線段BC恰有一個公共點,則
的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線
與
軸交于
,
兩點(點
在點
的左側(cè)),與
軸交于點
,對稱軸與
軸交于點
,點
在拋物線上.
![]()
(1)求直線
的解析式.
(2)點
為直線
下方拋物線上的一點,連接
,
.當(dāng)
的面積最大時,連接
,
,點
是線段
的中點,點
是線段
上的一點,點
是線段
上的一點,求
的最小值.
(3)點
是線段
的中點,將拋物線
與
軸正方向平移得到新拋物線
,
經(jīng)過點
,
的頂點為點
,在新拋物線
的對稱軸上,是否存在點
,使得
為等腰三角形?若存在,直接寫出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中,
.將
向內(nèi)翻折,點
落在
上,記為
,折痕為
.若將
沿
向內(nèi)翻折,點
恰好 落在
上,記為
,則
的長為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)
的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補充完整.
(1)自變量
的取值范圍是全體實數(shù),
與
的幾組對應(yīng)值列表如下:其中,
.
| …… |
|
|
|
| 0 | 1 | 2 |
| 3 | …… |
| …… | 3 |
|
|
| 0 |
| 0 |
| 3 | …… |
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,已畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出一條函數(shù)的性質(zhì): ;
(4)觀察函數(shù)圖象發(fā)現(xiàn):若關(guān)于
的方程
有4個實數(shù)根,則
的取值范圍是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關(guān)于⊙C的限距點的定義如下:若P′為直線PC與⊙C的一個交點,滿足r≤PP′≤2r,則稱P′為點P關(guān)于⊙C的限距點,如圖為點P及其關(guān)于⊙C的限距點P′的示意圖.
(1)當(dāng)⊙O的半徑為1時.
①分別判斷點M(3,4),N(
,0),T(1,
)關(guān)于⊙O的限距點是否存在?若存在,求其坐標(biāo);
②點D的坐標(biāo)為(2,0),DE,DF分別切⊙O于點E,點F,點P在△DEF的邊上.若點P關(guān)于⊙O的限距點P′存在,求點P′的橫坐標(biāo)的取值范圍;
(2)保持(1)中D,E,F三點不變,點P在△DEF的邊上沿E→F→D→E的方向運動,⊙C的圓心C的坐標(biāo)為(1,0),半徑為r,請從下面兩個問題中任選一個作答.
問題1:若點P關(guān)于⊙C的限距點P′存在,且P′隨點P的運動所形成的路徑長為πr,則r的最小值為__________.
問題2:若點P關(guān)于⊙C的限距點P′不存在,則r的取值范圍為_________.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com