【題目】如圖,在平面直角坐標(biāo)系中拋物線
交
軸于點(diǎn)
,交
軸于點(diǎn)
,
兩點(diǎn)橫坐標(biāo)為
和
,
點(diǎn)縱坐標(biāo)為
.
![]()
求拋物線的解析式;
動點(diǎn)
在第四象限且在拋物線上,當(dāng)
面積最大時(shí),求
點(diǎn)坐標(biāo),并求
面積的最大值.
【答案】(1)y=
x2﹣
x﹣4;(2)S有最大值
,D(
,﹣5)
【解析】
(1)根據(jù)拋物線與x軸的交點(diǎn)的橫坐標(biāo)為-1和3,可用交點(diǎn)式將此函數(shù)表示成y=a(x+1)(x﹣3),再將它與y軸的交點(diǎn)(0,-4)代入這個解析式,求出a的值后即可得到此拋物線的解析式;(2)過D作垂直x軸的直線交BC于點(diǎn)N,這樣可以將
分成
和
,利用
,在確定D點(diǎn)和N點(diǎn)的坐標(biāo)后表示出DN的長,便能計(jì)算得到
,從而可以確定
面積最大值,進(jìn)而易求出點(diǎn)D的坐標(biāo).
解:(1)拋物線的表達(dá)式為:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),
將C(0,4)代入,
得﹣3a=﹣4,解得:a=
,
∴拋物線的表達(dá)式為:y=
x2﹣
x﹣4;
(2)過點(diǎn)D作y軸的平行線交BC于點(diǎn)N,
![]()
由B、C的坐標(biāo)可得直線BC的表達(dá)式為:y=
x﹣4,
設(shè)點(diǎn)D(x,
x2﹣
x﹣4),點(diǎn)N(x,
x﹣4),
S△BCD=
×OB×ND=
3×(
x﹣4﹣
x2+
x+4)=﹣2x2+6x,
∵﹣2<0,故S有最大值
,
此時(shí),x=
,點(diǎn)D(
,﹣5);
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(
,﹣2);⑤當(dāng)x<
時(shí),y隨x的增大而減小;⑥a+b+c>0正確的有( )
![]()
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為 ( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)
,
,
,連接
,
得到四邊形
.點(diǎn)
在邊
上,連接
,將邊
沿
折疊,點(diǎn)
的對應(yīng)點(diǎn)為點(diǎn)
,若點(diǎn)
到四邊形
較長兩對邊的距離之比為
.則點(diǎn)
的坐標(biāo)為_______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正確的結(jié)論有( 。.
![]()
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與y軸交于點(diǎn)C,與反比例函數(shù)y=
的圖象交于A,B兩點(diǎn),過點(diǎn)B作BE⊥x軸于點(diǎn)E,已知A點(diǎn)坐標(biāo)是(2,4),BE=2.
![]()
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)連接OA、OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點(diǎn)P在BC邊上,將△CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE、DE分別交AB于點(diǎn)O、F,且OP=OF,則cos∠ADF的值為( 。
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=﹣
x+6分別與x軸、y軸交于點(diǎn)A,B.當(dāng)點(diǎn)P在線段AB(點(diǎn)P不與A,B重合)上運(yùn)動時(shí),在坐標(biāo)系內(nèi)存在一點(diǎn)N,使得以O,B,P,N為頂點(diǎn)的四邊形為菱形.請直接寫出N點(diǎn)坐標(biāo)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,∠AOB=90°,AO=2,BO=4.將△OAB繞頂點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)到△OA1B1處,此時(shí)線段OB1與AB的交點(diǎn)D恰好為線段AB的中點(diǎn),線段A1B1與OA交于點(diǎn)E,則圖中陰影部分的面積__.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com