【題目】如圖,在△ABC中∠BAC=90°,AB=AC=2
,圓A的半徑1,點(diǎn)O在BC邊上運(yùn)動(與點(diǎn)B/C不重合),設(shè)BO=X,△AOC的面積是y.
⑴求y關(guān)于x的函數(shù)關(guān)系式及自變量的取值范圍;
⑵以點(diǎn)O位圓心,BO為半徑作圓O,求當(dāng)○O與○A相切時,△AOC的面積.![]()
【答案】(1)過點(diǎn)A作AH⊥BC于H
∵∠BAC=90°,AB=AC=
∴BC=4,AH=2,
∴![]()
即y=-x+4(0<x<4)
(2)當(dāng)點(diǎn)O與點(diǎn)H重合時,圓O與圓A相交,不合題意;當(dāng)點(diǎn)O與點(diǎn)H不重合時,在Rt△AOH中,![]()
∵圓A的半徑為1,圓O的半徑為x,
∴①當(dāng)圓A與圓O外切時,
解得x=
,
=y=![]()
②當(dāng)圓A與圓O內(nèi)切時,
解得x=
,
=y=![]()
【解析】
(1)由∠BAC=90°,AB="AC=2"
,根據(jù)勾股定理即可求得BC,且∠B=∠C,然后作AM⊥BC,由S△AOC=
OCAM,即可求得y關(guān)于x的函數(shù)解析式;
(2)由⊙O與⊙A外切或內(nèi)切,即可求得ON的值,繼而求得△AOC的面積.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù) y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為-3和1;④a-2b+c>0.其中正確的命題是( )
![]()
A. ①② B. ②③ C. ①③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,在這張紙板中剪出一個盡可能大的正方形稱為第1次剪取,記所得正方形面積為S1(如圖1);在余下的Rt△ADE和Rt△BDF中,分別剪取一個盡可能大的正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為S2(如圖2);繼續(xù)操作下去…;第2019次剪取后,余下的所有小三角形的面積之和是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)
在反比例函數(shù)
的圖象上,
,
軸于點(diǎn)C.
求反比例函數(shù)
的表達(dá)式;
求
的面積;
若將
繞點(diǎn)B按逆時針方向旋轉(zhuǎn)
得到
點(diǎn)O、A的對應(yīng)點(diǎn)分別為
、
,點(diǎn)
是否在反比例函數(shù)
的圖象上?若在請直接寫出該點(diǎn)坐標(biāo),若不在請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一個角是其對角兩倍的圓的內(nèi)接四邊形叫做圓美四邊形,其中這個角叫做美角
已知四邊形ABCD是圓美四邊形
求美角
的度數(shù);
如圖1,若
的半徑為
,求BD的長;
如圖2,若CA平分
,求證:
.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省溫州市)如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點(diǎn)A′和A,B′和B分別對應(yīng)).若AB=1,反比例函數(shù)
(k≠0)的圖象恰好經(jīng)過點(diǎn)A′,B,則k的值為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
,
,經(jīng)過
兩點(diǎn)的圓交
軸于點(diǎn)
(
在
上方),則四邊形
面積的最小值為__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對角線OB、AC相交于點(diǎn)D,雙曲線y=
(x>0)經(jīng)過點(diǎn)D,交BC的延長線于點(diǎn)E,且OBAC=160,則點(diǎn)E的坐標(biāo)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=
x刻畫.
![]()
(1)請用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com