【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于點(diǎn)E,CD=4
,AE=2,則⊙O的半徑為 . ![]()
【答案】3
【解析】解:∵AB是⊙O的直徑,且CD⊥AB于點(diǎn)E, ∴CE=
CD=
×4
=2
,
在Rt△OCE中,OC2=CE2+OE2 ,
設(shè)⊙O的半徑為r,則OC=r,OE=OA﹣AE=r﹣2,
∴r2=(2
)2+(r﹣2)2 ,
解得:r=3,
∴⊙O的半徑為3.
所以答案是:3.
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和垂徑定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧才能得出正確答案.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線(xiàn)l是由函數(shù)y=
在第一象限內(nèi)的圖象繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°得到的,過(guò)點(diǎn)A(﹣4
,4
),B(2
,2
)的直線(xiàn)與曲線(xiàn)l相交于點(diǎn)M、N,則△OMN的面積為 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
頻數(shù)頻率分布表
成績(jī)x(分) | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根據(jù)所給信息,解答下列問(wèn)題:![]()
(1)m= , n=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線(xiàn)段DE與線(xiàn)段AB相交于點(diǎn)P,線(xiàn)段EF與射線(xiàn)CA相交于點(diǎn)Q. ![]()
(1)如圖①,當(dāng)點(diǎn)Q在線(xiàn)段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線(xiàn)段CA的延長(zhǎng)線(xiàn)上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時(shí)BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列6個(gè)代數(shù)式:ab、ac、a+b+c、2a+b、2a﹣b中,其值為正的式子的個(gè)數(shù)是( ) ![]()
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)用直尺和圓規(guī)在所給的兩個(gè)矩形中各作一個(gè)不為正方形的菱形,且菱形的四個(gè)頂點(diǎn)都在矩形的邊上,面積相同的圖形視為同一種.(保留作圖痕跡).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,雙曲線(xiàn)y=
(x>0)與直線(xiàn)EF交于點(diǎn)A,點(diǎn)B,且AE=AB=BF,連結(jié)AO,BO,它們分別與雙曲線(xiàn)y=
(x>0)交于點(diǎn)C,點(diǎn)D,則:![]()
(1)①AB與CD的位置關(guān)系是;
②四邊形ABDC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG. ![]()
(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點(diǎn)G是BC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是( )
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;
④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2
時(shí),菱形ABCD的邊長(zhǎng)為2.![]()
A.①②③
B.②④⑤
C.①②⑤
D.②③⑤
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com