【題目】在
中,
,
,
,將
以點(diǎn)C為中心順時(shí)針旋轉(zhuǎn)
,得到
,連接BE、AD.下列說法錯誤的是( )
![]()
A.
B.
C.
D.![]()
【答案】D
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=AC,再根據(jù)三角形的面積公式即可對A項(xiàng)進(jìn)行判斷;先求出AE的長,進(jìn)而可對B項(xiàng)進(jìn)行判斷;如圖,由旋轉(zhuǎn)的性質(zhì)和等腰直角三角形的性質(zhì)可分別得出∠1、∠2、∠3、∠4的度數(shù),進(jìn)而可對C項(xiàng)進(jìn)行判斷;由于∠CED≠45°,即可對D項(xiàng)進(jìn)行判斷.
如圖,延長BE交AD于點(diǎn)F,
∵
以點(diǎn)C為中心順時(shí)針旋轉(zhuǎn)
,得到
,
,
,
,
∴CD=AC=3,BC=EC=1,AE=2,
∴BD=1+3=4,∠1=∠2=45°,∠4=∠ADC=45°,
∴
,
,∠3=∠2=45°,
∴∠AFE=90°,即
,
∴A、B、C三項(xiàng)都是正確的;
而∠CED≠45°,∴
,∴D選項(xiàng)是錯誤的.
故選D.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.”這里,根據(jù)已學(xué)的相似三角形的知識,易證:
=
.在圖1這個基本圖形的基礎(chǔ)上,繼續(xù)添加條件“如圖2,點(diǎn)E是直線AC上一動點(diǎn),連接DE,過點(diǎn)D作FD⊥ED,交直線BC于點(diǎn)F,設(shè)
=
.”
![]()
(1)探究發(fā)現(xiàn):如圖②,若m=n,點(diǎn)E在線段AC上,則
= ;
(2)數(shù)學(xué)思考:
①如圖3,若點(diǎn)E在線段AC上,則
= (用含m,n的代數(shù)式表示);
②當(dāng)點(diǎn)E在直線AC上運(yùn)動時(shí),①中的結(jié)論是否仍然成立?請僅就圖4的情形給出證明;
(3)拓展應(yīng)用:若AC=
,BC=2
,DF=4
,請直接寫出CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接AC、BC,過點(diǎn)C作∠BCP=∠BAC,交AB的延長線于點(diǎn)P,弦CD平分∠ACB,交AB于點(diǎn)E,連接OC、AD、BD.
(1)求證:PC為⊙O的切線;
(2)若OC=5,OE=1,求PC的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=
(x>0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)若點(diǎn)P是x軸上一動點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)
圖象的一部分,在下列結(jié)論中:①
;②
;③
有兩個相等的實(shí)數(shù)根;④
;其中正確的結(jié)論有( )
![]()
A.1個B.2 個C.3 個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB,連接DO并延長交CB的延長線于點(diǎn)E,連接OC.
![]()
(1) 判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2) 若BE=
,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),直線MN經(jīng)過點(diǎn)C,過點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且∠BAC=∠CAD.
![]()
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖像如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c–m=0有兩個實(shí)數(shù)根,下列結(jié)論:①b2-4ac>0;②abc>0;③a-b+c>0;④m≥-2,其中正確的個數(shù)有( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com