【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請(qǐng)?jiān)趫D2的方格中畫(huà)出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線(xiàn)化為實(shí)線(xiàn))
(2)若要用大小相同的小立方塊搭一個(gè)幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫(huà)的形狀圖相同,則搭這樣的一個(gè)幾何體最多需要 個(gè)小立方塊.
![]()
【答案】(1)詳見(jiàn)解析;(2)9
【解析】
(1)從上面看得到從左往右4列正方形的個(gè)數(shù)依次為1,2,1,1,依此畫(huà)出圖形即可;從左面看得到從左往右2列正方形的個(gè)數(shù)依次為2,1;依此畫(huà)出圖形即可;
(2)由俯視圖易得最底層小立方塊的個(gè)數(shù),由左視圖找到其余層數(shù)里最多個(gè)數(shù)相加即可.
解:(1)如圖所示:
![]()
(2)搭這樣的一個(gè)幾何體最大需要5+4=9個(gè)小立方塊.
故答案為:9.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,M,N分別是AD,BC的中點(diǎn),E,F分別是線(xiàn)段BM,CM的中點(diǎn),若AB=8,AD=12,則四邊形ENFM的周長(zhǎng)是多少?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OE是∠AOC的角平分線(xiàn),OD是∠BOC的角平分線(xiàn).
(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度數(shù);
(2)若∠AOB=90°,∠BOC=α,求∠DOE的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是 ( )
A.凌晨氣溫為-5℃,中午氣溫比凌晨上升5℃,所以中午的氣溫為+5℃
B.-(-2)3 和 -23互為相反數(shù)
C.-5πxy3 的系數(shù)是-5,次數(shù)是4
D.-︱-6
︱=-(-6
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,
(1)寫(xiě)出數(shù)軸上點(diǎn)B所表示的數(shù) ;
(2)點(diǎn)P所表示的數(shù) ;(用含t的代數(shù)式表示);
(3)M是AP的中點(diǎn),N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線(xiàn)段MN的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,請(qǐng)你畫(huà)出圖形,并求出線(xiàn)段MN的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AC、BD相交于點(diǎn)O,點(diǎn)E、F在BD上,且BE=DF.連
接AE、CF.
(1)求證△AOE≌△COF;
(2)若AC⊥EF,連接AF、CE,判斷四邊形AECF的形狀,并說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀(guān)察下列兩個(gè)等式:
,
,給出定義如下:我們稱(chēng)使等式a﹣b=ab+1的成立的一對(duì)有理數(shù)a,b為“共生有理數(shù)對(duì)”,記為(a,b),如:數(shù)對(duì)
,
,都是“共生有理數(shù)對(duì)”.
(1)數(shù)對(duì)
,
中是“共生有理數(shù)對(duì)”的是 ;
(2)若(m,n)是“共生有理數(shù)對(duì)”,則(﹣n,﹣m) “共生有理數(shù)對(duì)”(填“是”或“不是”);
(3)請(qǐng)?jiān)賹?xiě)出一對(duì)符合條件的“共生有理數(shù)對(duì)”為 ;(注意:不能與題目中已有的“共生有理數(shù)對(duì)”重復(fù))
(4)若(a,3)是“共生有理數(shù)對(duì)”,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(a,0)、B(b,0)(a≠0),a、b滿(mǎn)足
+b2+2bc+c2=0
(1) 直接寫(xiě)出a與b的關(guān)系
(2) 如圖,將線(xiàn)段AB沿y軸的正方向平移m個(gè)單位得到線(xiàn)段PQ,點(diǎn)M在線(xiàn)段PQ上,QM=3MP,過(guò)M作MF∥PA交QA于點(diǎn)F,連接BM,BM平分∠PMF.若BM=
,求m的值
(3) 如圖,點(diǎn)C在第一象限內(nèi),且滿(mǎn)足CA=OA,點(diǎn)E在x軸上,AE=BC,連接CE,取CE的中點(diǎn)N,連接NO.若∠BCA=α,求∠NOC(用含α的代數(shù)式表示)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,E為對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交射線(xiàn)AB于點(diǎn)F,連結(jié)BE.
(1)求證:∠AFD=∠EBC;
(2)若∠DAB=90°,當(dāng)△BEF為等腰三角形時(shí),求∠EFB的度數(shù).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com