【題目】河南靈寶蘋果為中華蘋果之翹楚,被譽為“中華名果”.某水果超市計劃從靈寶購進(jìn)“紅富士”與“新紅星”兩種品種的蘋果.已知2箱紅富士蘋果的進(jìn)價與3箱新紅星蘋果的進(jìn)價的和為282元,且每箱紅富士蘋果的進(jìn)價比每箱新紅星蘋果的進(jìn)價貴6元.
(1)求每箱紅富士蘋果的進(jìn)價與每箱新紅星蘋果的進(jìn)價分別是多少元?
(2)如果購進(jìn)紅富士蘋果有優(yōu)惠,優(yōu)惠方案是:購進(jìn)紅富士蘋果超過20箱,超出部分可以享受七折優(yōu)惠.若購進(jìn)
(
,且
為整數(shù))箱紅富士蘋果需要花費
元,求
與
之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,超市決定在紅富士、新紅星兩種蘋果中選購其中一種,且數(shù)量超過20箱,請你幫助超市選擇購進(jìn)哪種蘋果更省錢.
【答案】(1)每箱紅富士蘋果的進(jìn)價與每箱新紅星蘋果的進(jìn)價分別是60元和54元;(2)
;(3)見詳解.
【解析】
(1)設(shè)每箱新紅星蘋果的進(jìn)價是x元,則每箱紅富士蘋果的進(jìn)價為x+6元,然后列方程即可解答;
(2)分別列出
和
時
與
之間的函數(shù)關(guān)系式即可;
(3)列出購進(jìn)新紅星蘋果的花費,列不等式即可解決.
解:(1)設(shè)每箱新紅星蘋果的進(jìn)價是x元,則每箱紅富士蘋果的進(jìn)價為x+6元,
根據(jù)題意可列方程為
,
解得
,
54+6=60,
每箱紅富士蘋果的進(jìn)價與每箱新紅星蘋果的進(jìn)價分別是60元和54元;
(2)當(dāng)
時,
,
當(dāng)
時,
,
∴
(3)設(shè)購進(jìn)蘋果為b箱,購進(jìn)新紅星蘋果的花費為z元,
,
,
若
時,解得
,即
,此時購進(jìn)新紅星蘋果更省,
若
時,解得
,此時購進(jìn)紅富士蘋果更省,
若
時,解得
,此時購進(jìn)兩種蘋果費用相同.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線
與x軸交于點A,與雙曲線
的一個交點為B(-1,4).
(1)求直線與雙曲線的表達(dá)式;
(2)過點B作BC⊥x軸于點C,若點P在雙曲線
上,且△PAC的面積為4,求點P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)調(diào)查社區(qū)居民雙休日的學(xué)習(xí)狀況,采取下列調(diào)查方式:①從一幢高層住宅樓中選取200名居民;②從不同住層樓中隨機(jī)選取200名居民;③選取社區(qū)內(nèi)的200名在校學(xué)生.
![]()
(1)上述調(diào)查方式最合理的是 (填序號);
(2)將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計圖(如圖①)和頻數(shù)分布直方圖(如圖②).
①請補全直方圖(直接畫在圖②中);
②在這次調(diào)查中,200名居民中,在家學(xué)習(xí)的有 人;
(3)請估計該社區(qū)2000名居民中雙休日學(xué)習(xí)時間不少于4h的人數(shù);
(4)小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時,正好叔叔沒有學(xué)習(xí)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2
mx+m2+m-1(m為常數(shù)).
(1)求證:不論m為何值,該二次函數(shù)的圖像與x軸總有兩個公共點;
(2)將該二次函數(shù)的圖像向下平移k(k>0)個單位長度,使得平移后的圖像經(jīng)過點(0,-2),則k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是
的對角線,
,
的邊
,
,
的長是三個連續(xù)偶數(shù),
,
分別是邊
,
上的動點,且
,將
沿著
折疊得到
,連接
,
.若
為直角三角形時,
的長為_______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要求在下列問題中僅用無刻度的直尺作圖.如圖,在下列10×12的網(wǎng)格中, 橫、縱坐標(biāo)均為整數(shù)的點叫做格點.例如正方形ABCD的頂點A(0,7),C(5,2)都是格點.
(1)找一個格點M, 連接AM交邊CD于F,使DF=FC,畫出圖形寫出點M的坐標(biāo)為 ;
(2)找一個格點N, 連接ON交邊BC于E,使BE=
BC,畫出圖形寫出點N的坐標(biāo)為 ;
(3)連接AE、EF得△AEF.請按步驟完成作圖,并寫出△AEF的面積為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國北方又進(jìn)入了火災(zāi)多發(fā)季節(jié),為此,某校在全校1200名學(xué)生中隨機(jī)抽取一部分人進(jìn)行“安全防火,警鐘長鳴”知識問卷調(diào)查活動,對問卷調(diào)查成績按“很好”、“較好”、“一般”“較差”四類匯總分析,并繪制了如下扇形統(tǒng)計圖和條形統(tǒng)計圖.
(1)本次活動共抽取了多少名同學(xué)?
(2)補全條形統(tǒng)計圖;
(3)根據(jù)以上調(diào)查結(jié)果分析,估計該校1200名學(xué)生中,對“安全防火”知識了解“較好”和“很好”的學(xué)生大約共計有多少名.
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸,y軸分別交于點A(2,0),點B(0,2
),動點D以1個單位長度/秒的速度從點A出發(fā)向x軸負(fù)半軸運動,同時動點E以
個單位長度/秒的速度從點B出發(fā)向y軸負(fù)半軸運動,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F
![]()
(1)求∠OAB度數(shù);
(2)當(dāng)t為何值時,四邊形ADEF為菱形,請求出此時二次函數(shù)解析式;
(3)是否存在實數(shù)t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種學(xué)生用雙肩包,已知這種雙肩包的成本價為每個30元市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量
(單位:個)與銷售單價
(單位:元)有如下關(guān)系:
.設(shè)這種雙肩包每天的銷售利潤為
元.
(1)求
與
之間的函數(shù)關(guān)系式.
(2)這種雙肩包的銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種雙肩包每天要獲得200元的銷售利潤,根據(jù)薄利多銷的原則,銷售單價應(yīng)定為多少元?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com