【題目】如圖1是實驗室中的一種擺動裝置,
在地面上,支架
是底邊為
的等腰直角三角形,擺動臂長
可繞點
旋轉,擺動臂
可繞點
旋轉,
,
.
![]()
(1)在旋轉過程中:
①當
三點在同一直線上時,求
的長;
②當
三點在同一直角三角形的頂點時,求
的長.
(2)若擺動臂
順時針旋轉
,點
的位置由
外的點
轉到其內的點
處,連結
,如圖2,此時
,
,求
的長.
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD中,AD=2,AB=3,點E,F分別在邊AB,BC上,且BF=FC,連接DE,EF,并以DE,EF為邊作DEFG.
![]()
(1)連接DF,求DF的長度;
(2)求DEFG周長的最小值;
(3)當DEFG為正方形時(如圖2),連接BG,分別交EF,CD于點P、Q,求BP:QG的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點D,點E為弧AD的中點,連接CE交AB于點F,且BF=BC.
![]()
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,
=
,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖
,已知
、
、
、
、
是
上五點,
的直徑
,
.
為
的中點,延長
到點
.使
,連接
.
![]()
(1)求線段
的長;
(2)求證:直線
是
的切線.
(3)如圖
,連
交
于點
,延長交PO交
于另一點
,連
、
,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數圖象是拋物線,拋物線是指平面內到一個定點
和一條定直線
距離相等的點的軌跡.其中定點
叫拋物線的焦點,定直線
叫拋物線的準線.
①拋物線
(
)的焦點為
,例如,拋物線
的焦點是
;拋物線
的焦點是___________;
②將拋物線
(
)向右平移
個單位、再向上平移
個單位(
,
),可得拋物線
;因此拋物線
的焦點是
.例如,拋物線
的焦點是
;拋物線
的焦點是_____________________.根據以上材料解決下列問題:
(1)完成題中的填空;
(2)已知二次函數的解析式為
;
①求其圖象的焦點
的坐標;
②求過點
且與
軸平行的直線與二次函數
圖象交點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃垂直于墻的一邊長為x米.
![]()
(1)若苗圃的面積為72平方米,求x的值;
(2)這個苗圃的面積能否是120平方米?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果經銷商到大圩種植基地采購葡萄,經銷商一次性采購葡萄的采購單價y(元/千克)與采購量x(千克)之間的函數關系圖象如圖中折線AB→BC→CD所示(不包括端點A),
![]()
(1)當500<x≤1000時,寫出y與x之間的函數關系式;
(2)葡萄的種植成本為8元/千克,某經銷商一次性采購葡萄的采購量不超過1000千克,當采購量是多少時,大圩種植基地獲利最大,最大利潤是多少元?
(3)在(2)的條件下,若經銷商一次性付了16800元貨款,求大圩種植基地可以獲得多少元的利潤?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將等邊△ABC繞點C順時針旋轉90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.
(1)求∠CFA度數;
(2)求證:AD∥BC.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com