【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD//CO.
![]()
(1)求證:△ADB∽△OBC;
(2)若AB=2,BC=
,求AD的長.(結(jié)果保留根號(hào))
【答案】(1)詳見解析;(2)![]()
【解析】
(1)根據(jù)AB為圓O的直徑,根據(jù)圓周角定理得到∠D為90°,又BC為圓O的切線,根據(jù)切線性質(zhì)得到∠CBO=90°,進(jìn)而得到這兩個(gè)角相等,又AD∥CO,根據(jù)兩直線平行,得到一對(duì)同位角相等,從而利用兩角對(duì)應(yīng)相等的兩三角形相似即可得證;
(2)根據(jù)勾股定理求得OC=
,由(1)得到的相似三角形,根據(jù)相似三角形的對(duì)應(yīng)邊成比例得出
,即AD=
,求出AD的長.
(1)證明:∵AB是⊙O的直徑,
∴∠ADB=∠90°,
∵BC是⊙O的切線,
∴∠OBC=∠90°,
∵AD∥CO,
∴∠A=∠COB,
在△ABD和△OBC中
∵∠ADB=∠OBC,∠A=∠COB,
∴△ABD∽△OCB;
(2)由(1)知,△ABD∽△OCB,
∴
,即AD=
,
∵AB=2,BC=
,
∴OB=1,
∴OC=
=
,
∴AD=
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦學(xué)生綜合素質(zhì)大賽,分“單人項(xiàng)目”和“雙人項(xiàng)目”兩種形式,比賽題目包括下列五類:
.人文藝術(shù);
.歷史社會(huì);
.自然科學(xué);
.天文地理;
.體育健康.
(1)若小明參加“單人項(xiàng)目”,他從中抽取一個(gè)題目,那么恰好抽中“自然科學(xué)”類題目的概率為_____.
(2)小林和小麗參加“雙人項(xiàng)目”,比賽規(guī)定:同一小組的兩名同學(xué)的題目類型不能相同,且每人只能抽取一次,求他們抽到“天文地理”和“體育健康”類題目的概率是多少?(用畫樹狀圖或列表的方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,
,點(diǎn)
是
的中點(diǎn),以
為直角邊向外作等腰
,連接
,當(dāng)
取最大值時(shí),則
的度數(shù)是________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
的斜邊
在
軸上,邊
與
軸交于點(diǎn)
,
平分
交邊
于點(diǎn)
,經(jīng)過點(diǎn)
的圓的圓心
恰好在
軸上,⊙
與
里面相交于另一點(diǎn)
.
(1)求證:
是⊙
的切線 ;
(2)若點(diǎn)
的坐標(biāo)分別為
,求⊙
的半徑及線段
的長;
(3)試探究線段
三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形
的頂點(diǎn)
的坐標(biāo)分別為
頂點(diǎn)在
雙曲線![]()
上,邊
交
軸于點(diǎn)
.若四邊形
的面積是
面積的
倍,則點(diǎn)
的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =
,④
中,正確的有( )
![]()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)
,
的坐標(biāo)分別為
和
.
是由
經(jīng)過一系列變化得到的.
![]()
(1)請(qǐng)通過作圖說明
經(jīng)過怎樣的變化可以得到
;
(2)若
為
內(nèi)任一點(diǎn),則它的對(duì)應(yīng)點(diǎn)
的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形
內(nèi)接于
,
為
延長線上一點(diǎn),
平分
.
![]()
(1)求證:
;
(2)如圖2,若
為直徑,過
點(diǎn)的圓的切線交
延長線于
,若
,
,求
的半徑.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com