分析 (1)分別證明D在AB的垂直平分線(xiàn)上,C也在AB的垂直平分線(xiàn)上,
即可解決問(wèn)題.
(2)只要證明∠CDE=∠BDE=60°即可.
(3)首先證明△DCM是等邊三角形,再證明△ADC≌△EMC,即可推出ME=AD=BD.
解答 證明:(1)∵△ABC是等腰直角三角形,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,∠ABD=∠ABC-15°=30°,
∴∠BAD=∠ABD,
∴BD=AD.
∴D在AB的垂直平分線(xiàn)上,
∵AC=BC,
∴C也在AB的垂直平分線(xiàn)上,![]()
∴直線(xiàn)CD是線(xiàn)段AB的垂直平分線(xiàn).
(2)∵CD是線(xiàn)段AB的垂直平分線(xiàn),
∴∠ACD=∠BCD=45°,
∴∠CDE=15°+45°=60°,
∴∠BDE=∠DBA+∠BAD=60°,
∴∠CDE=∠BDE,
∴DE平分∠BDC.
(3)如圖,連接MC.
∵DC=DM,∠MDC=60°,
∴△DMC是等邊三角形.
∴CM=CD,∠DMC=∠CDM=60°,
∴∠ADC=∠EMC=120°,
在△ADC和△EMC中,
$\left\{\begin{array}{l}{∠ADC=∠EMC}\\{∠DAC=∠MEC}\\{AC=EC}\end{array}\right.$,
∴△ADC≌△EMC,
∴ME=AD=BD.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、等邊三角形的判定和性質(zhì)、線(xiàn)段的垂直平分線(xiàn)的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)添加常用輔助線(xiàn),構(gòu)造全等三角形,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-m,n) | B. | (m,-n) | C. | (-m,-n) | D. | (n,m) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com