解:(1)如圖1,

①作一條線段AB,
②作線段AB的中點(diǎn)O,
③以點(diǎn)O為圓心,AB長(zhǎng)為半徑畫圓,
④在圓O上取一點(diǎn)C(點(diǎn)E、F除外),連接AC、BC.
∴△ABC是所求作的三角形.
(2)如圖2,

取AC的中點(diǎn)D,連接BD.
∵∠C=90°,tanA=

,
∴

∴設(shè)BC=

x,則AC=2x,
∵D是AC的中點(diǎn),
∴CD=

AC=x
∴BD=

=

=2x,
∴AC=BD
∴△ABC是“好玩三角形”;
(3)①當(dāng)β=45°,點(diǎn)P在AB上時(shí),
∴∠ABC=2β=90°,
∴△APQ是等腰直角三角形,不可能是“好玩三角形”,
如圖3,當(dāng)P在BC上時(shí),連接AC交PQ于點(diǎn)E,延長(zhǎng)AB交QP的延長(zhǎng)線于點(diǎn)F,

∵四邊形ABCD是菱形,∠ABC=2β=90°,
∴四邊形ABCD是正方形,
∴AB=BC,∠ACB=∠ACD=45°,
∴∠CAB=∠ACP,
∵PC=CQ,∠ACB=∠ACD,
∴∠AEF=∠CEP=90°,
∴△AEF∽△CEP,且△AEF、△CEP和△BFP都是等腰直角三角形,
∴

.
∵PE=CE,
∴

.
(Ⅰ)當(dāng)?shù)走匬Q與它的中線AE相等時(shí),即AE=PQ時(shí),

,
∴

,
(Ⅱ)當(dāng)腰AP與它的中線QM相等,即AP=QM時(shí),
作QN⊥AP于N,如圖4

∵AP=QM=AQ
∴MN="AN="

MP.
∴QN=

MN,
∴tan∠APQ=

,
∴tan∠APE=

,
∴

=

②由①可知,當(dāng)AE=PQ和AP=QM時(shí),有且只有一個(gè)△APQ能成為“好玩三角形”,
∴

<tanβ<2時(shí),有且只有一個(gè)△APQ能成為“好玩三角形”.
(4)由(3)可以知道:在P、Q的運(yùn)動(dòng)過程中,當(dāng)0<tanβ<

時(shí),使得△APQ成為“好玩三角形”的個(gè)數(shù)為2.
(1)先畫一條線段AB,再確定AB的中點(diǎn)O,以點(diǎn)O為圓心,AB為半徑畫圓,在圓O上取一點(diǎn)C,連接AC、BC,則△ABC是所求作的三角形;
(2)取AC的中點(diǎn)D,連接BD,設(shè)BC=

x,根據(jù)條件可以求出AC=2x,由三角函數(shù)可以求出BD=2x,從而得出AC=BD,從而得出結(jié)論;
(3)①當(dāng)β=45°時(shí),分情況討論,P點(diǎn)在AB上時(shí),△APQ是等腰直角三角形,不可能是“好玩三角形”,當(dāng)P在BC上時(shí),延長(zhǎng)AB交QP的延長(zhǎng)線于點(diǎn)F,可以求出

,再分情況討論,當(dāng)AE=PQ和AP=QM時(shí),求出

的值;
②根據(jù)①求出的兩個(gè)

的值可以求出tanβ的取值范圍;
(4)由(3)可以得出“在P、Q的運(yùn)動(dòng)過程中,當(dāng)0<tanβ<

時(shí),使得△APQ成為‘好玩三角形’的個(gè)數(shù)為2”是真命題.