【題目】如圖,△ABC中,AB=AC=24,D是BC的中點(diǎn),AC的垂直平分線(xiàn)EF分別交AC、AD于點(diǎn)E、F,EF = 5 .
![]()
(1)求點(diǎn)F到邊AB的距離FG的長(zhǎng);
(2)求 F到B點(diǎn)的距離FB的長(zhǎng).
【答案】(1)5; (2)13.
【解析】
(1)由等腰三角形三線(xiàn)合一,可知AD平分∠CAB,再由角平分線(xiàn)性質(zhì)即可得FG=EF;
(2)易證△AEF≌△AGF,所以AE=AG,E為AC的中點(diǎn),則AE=AG=12,在△BGF中利用勾股定理即可求BF.
解:(1)∵在△ABC中,AB=AC,D是BC的中點(diǎn)
∴AD平分∠CAB,
又∵F為AD上一點(diǎn),且FE⊥AC,FG⊥AB,
∴FG=FE=5
(2)在Rt△AEF和Rt△AGF中,
![]()
∴![]()
∴AE=AG,
∵E點(diǎn)為AC中點(diǎn),AC=AB=24,
∴![]()
∴![]()
在Rt△BGF中,
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線(xiàn)PQ剪開(kāi),得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿(mǎn)足∠BQP=∠B,則下列五個(gè)數(shù)據(jù)
,3,
,2,
中可以作為線(xiàn)段AQ長(zhǎng)的有_____個(gè).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)2x2﹣7x=3
(2)196x2﹣1=0
(3)x2﹣2x﹣399=0
(4)7x(5x+2)=6(5x+2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)
的頂點(diǎn)P在x軸上,與y軸相交于點(diǎn)A.
Ⅰ
求點(diǎn)A的縱坐標(biāo)
用含b的式子表示
;
Ⅱ
當(dāng)
時(shí),y有最大值9,求b的值;
Ⅲ
點(diǎn)B在拋物線(xiàn)上,且
,連接AB,交對(duì)稱(chēng)軸于點(diǎn)C.
求證:PC為定長(zhǎng);
直接寫(xiě)出
面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,等腰
的斜邊OB在x軸上,直線(xiàn)
經(jīng)過(guò)等腰
的直角頂點(diǎn)A,交y軸于C點(diǎn),雙曲線(xiàn)
也經(jīng)過(guò)A點(diǎn)
連接BC.
求k的值;
判斷
的形狀,并求出它的面積.
若點(diǎn)P為x正半軸上一動(dòng)點(diǎn),在點(diǎn)A的右側(cè)的雙曲線(xiàn)上是否存在一點(diǎn)M,使得
是以點(diǎn)A為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)D、點(diǎn)E分別在邊AB、BC上,DE=AE,且∠B=∠C=∠DEA=β。
(1)求證:△BDE≌△CEA
(2)當(dāng)∠DEB=
β 時(shí),
①求 β 的值;
②若將△AEC繞點(diǎn)E順時(shí)針旋轉(zhuǎn),使得∠DEA =90°,如圖2所示,其余條件不變,連結(jié)AB交CE的延長(zhǎng)線(xiàn)于F,求證:CF=CA .
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年5月,我國(guó)南方某省A、B兩市遭受?chē)?yán)重洪澇災(zāi)害,1.5萬(wàn)人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運(yùn)物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運(yùn)往A、B兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.
(1)請(qǐng)?zhí)顚?xiě)下表
A(噸) | B(噸) | 合計(jì)(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(jì)(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求w與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)經(jīng)過(guò)搶修,從D市到B市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余路線(xiàn)運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小米利用暑期參加社會(huì)實(shí)踐,在媽媽的幫助下,利用社區(qū)提供的免費(fèi)攤點(diǎn)賣(mài)玩具,已知小米所有玩具的進(jìn)價(jià)均2元
個(gè),在銷(xiāo)售過(guò)程中發(fā)現(xiàn):每天玩具銷(xiāo)售量y件與銷(xiāo)售價(jià)格x元
件的關(guān)系如圖所示,其中AB段為反比例函數(shù)圖象的一部分,BC段為一次函數(shù)圖象的一部分,設(shè)小米銷(xiāo)售這種玩具的日利潤(rùn)為w元.
根據(jù)圖象,求出y與x之間的函數(shù)關(guān)系式;
求出每天銷(xiāo)售這種玩具的利潤(rùn)
元
與
元
件
之間的函數(shù)關(guān)系式,并求每天利潤(rùn)的最大值;
若小米某天將價(jià)格定為超過(guò)4元
,那么要使得小米在該天的銷(xiāo)售利潤(rùn)不低于54元,求該天玩具銷(xiāo)售價(jià)格的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將平行四邊形ABCD的邊DC延長(zhǎng)至點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF;
(2)連接AC、BE,則當(dāng)∠AFC與∠D滿(mǎn)足什么條件時(shí),四邊形ABEC是矩形?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com