【題目】已知函數
,
.
(1)若
,求曲線
在點
處的切線方程;
(2)若關于
的不等式
在
上恒成立,求實數
的取值范圍.
【答案】(1)
(2)
.
【解析】
(1)根據解析式求得切點,利用導數求得切線斜率,從而可求得切線方程;(2)將問題轉化為
在
上恒成立;當
單調遞減時滿足題意,即
恒成立即可,從而可求得
;當
時,
單調遞增,不符合題意;當
時,可證得
在
上單調遞增,不滿足題意;綜合三種情況可得
.
(1)當
時,
,則![]()
故
,又![]()
故所求切線方程為
,即![]()
(2)由題意得,
在
上恒成立
設函數
,則![]()
故對任意
,不等式
恒成立
①當
,即
恒成立時,函數
在
上單調遞減
設
,則![]()
,即
,解得
,符合題意;
②當
時,
恒成立,此時函數
在
上單調遞增
則不等式
對任意
恒成立,不符合題意;
③當
時,設
,則![]()
令
,解得![]()
當
時,
,此時
單調遞增
![]()
故當
時,函數
單調遞增
當
時,
成立,不符合題意.
綜上所述,實數
的取值范圍為![]()
科目:高中數學 來源: 題型:
【題目】我國古代著名的
周髀算經
中提到:凡八節二十四氣,氣損益九寸九分六分分之一;冬至晷
長一丈三尺五寸,夏至晷長一尺六寸
意思是:一年有二十四個節氣,每相鄰兩個節氣之間的日影長度差為
分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分
則“立春”時日影長度為
![]()
![]()
A.
分B.
分C.
分D.
分
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數方程是
(
為參數),把曲線
橫坐標縮短為原來的
,縱坐標縮短為原來的一半,得到曲線
,直線
的普通方程是
,以坐標原點
為極點,
軸正半軸為極軸建立極坐標系;
(1)求直線
的極坐標方程和曲線
的普通方程;
(2)記射線
與
交于點
,與
交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,直線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求直線
的普通方程和曲線
的直角坐標方程;
(2)若直線
與曲線
相交于
兩點,設點
,已知
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市開展年終大回饋,設計了兩種答題游戲方案:
方案一:顧客先回答一道多選題,從第二道開始都回答單選題;
方案二:顧客全部選擇單選題進行回答;
其中每道單選題答對得2分,每道多選題答對得3分,無論單選題還是多選題答錯都得0分,每名參與的顧客至多答題3道.在答題過程中得到3分或3分以上立刻停止答題,并獲得超市回饋的贈品.
為了調查顧客對方案的選擇情況,研究人員調查了參與游戲的500名顧客,所得結果如下表所示:
男性 | 女性 | |
選擇方案一 | 150 | 80 |
選擇方案二 | 150 | 120 |
(1)是否有95%的把握認為方案的選擇與性別有關?
(2)小明回答每道單選題的正確率為0.8,多選題的正確率為0.75,.
①若小明選擇方案一,記小明的得分為
,求
的分布列及期望;
②如果你是小明,你覺得選擇哪種方案更有可能獲得贈品,請通過計算說明理由.
附:
,![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出
關于
的線性回歸方程
;
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考數據
,
)
(參考公式:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數與中位數,餅圖給出的是2018年全年全國居民人均消費及其構成,現有如下說法:
①2018年全年全國居民人均可支配收入的平均數的增長率低于2017年;
②2018年全年全國居民人均可支配收入的中位數約是平均數的
;
③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的
.
![]()
則上述說法中,正確的個數是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com