【題目】已知函數(shù)h(x)是定義在(﹣2,2)上,滿足h(﹣x)=﹣h(x),且x∈(0,2)時,h(x)=﹣2x,當x∈(﹣2,0)時,不等式[h(x)+2]2>h(x)m﹣1恒成立,則實數(shù)m的取值范圍是_____.
【答案】
.
【解析】
題意說明函數(shù)為奇函數(shù),因此可求得
時的函數(shù)解析式,從而求出此時
的取值范圍,在不等式中作為一個整體(如可換設
),不等式恒成立采用分離參數(shù)法轉化為求函數(shù)的最值即可.
h(x)是定義在(﹣2,2)上,滿足h(﹣x)=﹣h(x),則h(x)為奇函數(shù),
令x∈(﹣2,0),則﹣x∈(0,2),
∵x∈(0,2)時,h(x)=﹣2x,
∴當﹣x∈(0,2)時,h(﹣x)=﹣2﹣x,
又h(x)是定義在(﹣2,2)上的奇函數(shù),
∴h(x)=﹣h(﹣x)=﹣(﹣2﹣x)=2﹣x,
即h(x)=2﹣x,x∈(﹣2,0),
當x∈(﹣2,0)時,不等式h2(x)+4h(x)+4>h(x)m﹣1,即h2(x)+4h(x)+5>h(x)m①,
由x∈(﹣2,0)時,h(x)單調遞減,故h(x)=2﹣x∈(1,4),
把①式參數(shù)分離可化為m
h(x)
,
不妨設t=2﹣x∈(1,4),y=t
4
,當且僅當t
∈(1,4),取等號,
所以m<y
,即
.
故答案為:
.
科目:高中數(shù)學 來源: 題型:
【題目】網(wǎng)購已經(jīng)成為一種新型的購物方式,2018年天貓雙11,僅1小時47分鐘成交額超過1000億元,比2017年達到1000億元的時間縮短了7個小時,為了研究市民對網(wǎng)購的依賴性,從A城市16﹣59歲人群中抽取一個容量為100的樣本,得出下列2×2列聯(lián)表,其中16﹣39歲為青年,40﹣59歲為中年,當日消費金額超過1000元為消費依賴網(wǎng)購,否則為消費不依賴網(wǎng)購.
依賴網(wǎng)購 | 不依賴網(wǎng)購 | 小計 | |
青年(16﹣39歲) | 40 | 20 | |
中年(40﹣59歲) | 20 | 20 | |
小計 |
(1)完成2×2列聯(lián)表,計算X2值,并判斷是否有95%的把握認為網(wǎng)購依賴和年齡有關?
(2)把樣本中的頻率當作概率,隨機從A城市中選取5人,其中依賴網(wǎng)購的人數(shù)為隨機變量X,求隨機變量X的分布列及期望(附:X2
,當X2>3.841時,有95%的把握說事件A與B有關,當X2≤3.841時,沒有95%的把握說事件A與B有關)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關鍵詞的次數(shù)為基礎所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關鍵詞的搜索次數(shù)越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數(shù)變化的走勢圖.
![]()
根據(jù)該走勢圖,下列結論正確的是( )
A. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度呈周期性變化
B. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度不斷減弱
C. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
,設
.
(Ⅰ)若
在
處取得極值,且
,求函數(shù)
的單調區(qū)間;
(Ⅱ)若
時函數(shù)
有兩個不同的零點
、
.
①求
的取值范圍;②求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的一個焦點與上下頂點構成直角三角形,以橢圓E的長軸為直徑的圓與直線
相切.
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)
為橢圓
上不同的三點,
為坐標原點,若
,試問:
的面積是否為定值?若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(a,b∈R).
(1)若f(x)在點(1,f(1))的切線為y=x+1,求f(x)的單調性與極值;
(2)若b=﹣1,函數(shù)
有且只有一個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次高三年級統(tǒng)一考試中,數(shù)學試卷有一道滿分10分的選做題,學生可以從
,
兩道題目中任選一題作答.某校有900名高三學生參加了本次考試,為了了解該校學生解答該選做題的得分情況,計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001—900.
(1)若采用隨機數(shù)表法抽樣,并按照以下隨機數(shù)表,以加粗的數(shù)字5為起點,從左向右依次讀取數(shù)據(jù),每次讀取三位隨機數(shù),一行讀數(shù)用完之后接下一行左端.寫出樣本編號的中位數(shù);
05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74
07 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 51
51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48
26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94
14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43
(2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號為08,求樣本中所有編號之和:
(3)若采用分層軸樣,按照學生選擇
題目或
題目,將成績分為兩層,且樣本中
題目的成績有8個,平均數(shù)為7,方差為4:樣本中
題目的成績有2個,平均數(shù)為8,方差為1.用樣本估計900名考生選做題得分的平均數(shù)與方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:
1(a>b>0)的離心率e
,且點P(
,1)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的左焦點為F,右頂點為A,點M(s,t)(t>0)是橢圓C上的動點,直線AM與y軸交于點D,點E是y軸上一點,EF⊥DF,EA與橢圓C交于點G,若△AMG的面積為2
,求直線AM的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】奇函數(shù)f(x)在R上存在導數(shù)
,當x<0時,![]()
f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com