已知a為實(shí)數(shù),
。
⑴求導(dǎo)數(shù)
;
⑵若
,求
在[-2,2] 上的最大值和最小值;
⑶若
在(-∞,-2)和(2,+∞)上都是遞增的,求a的取值范圍。
⑴![]()
⑵f(x)在[-2,2]上的最大值為
最小值為![]()
⑶a的取值范圍是[-2,2].
解析試題分析:⑴由原式得
∴![]()
⑵由
得
,此時(shí)有
.
由
得
或x="-1" , 又![]()
所以f(x)在[-2,2]上的最大值為
最小值為![]()
⑶解法一:
的圖象為開口向上且過點(diǎn)(0,-4)的拋物線,由條件得![]()
即
∴-2≤a≤2.
所以a的取值范圍為[-2,2].
解法二:令
即
由求根公式得: ![]()
所以
在
和
上非負(fù).
由題意可知,當(dāng)x≤-2或x≥2時(shí),
≥0,
從而x1≥-2, x2≤2,
即
解不等式組得-2≤a≤2.
∴a的取值范圍是[-2,2].
考點(diǎn):導(dǎo)數(shù)計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值。
點(diǎn)評:中檔題,此類問題較為典型,是導(dǎo)數(shù)應(yīng)用的基本問題。在某區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù),導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)。求最值應(yīng)遵循“求導(dǎo)數(shù),求駐點(diǎn),計(jì)算極值及端點(diǎn)函數(shù)值,比較確定最值”。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求
在
上的最小值;
(2)若函數(shù)
在
上為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
處取得極值
.
(I)求實(shí) 數(shù)a和b. (Ⅱ)求f(x)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
的最小值為
,求
的最大值;
(3)若函數(shù)
的最小值為
,
為
定義域
內(nèi)的任意兩個(gè)值,試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函 數(shù)
.
(1)若曲線
在點(diǎn)
處的切線與直線
垂直,求函數(shù)
的單調(diào)區(qū)間;
(2)若對于
都有
成立,試求
的取值范圍;
(3)記
.當(dāng)
時(shí),函數(shù)
在區(qū)間
上有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
市內(nèi)電話費(fèi)是這樣規(guī)定的,每打一次電話不超過3分鐘付電話費(fèi)0.18元,超過3分鐘而不超過6分鐘的付電話費(fèi)0.36元,依次類推,每次打電話![]()
分鐘應(yīng)付話費(fèi)y元,寫出函數(shù)解析式并畫出函數(shù)圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax3+bx2-x(x∈R,a、b是常數(shù),a≠0),且當(dāng)x=1和x=2時(shí),函數(shù)f(x)取得極值.(I)求函數(shù)f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=![]()
有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1) 當(dāng)
時(shí), 求函數(shù)
的單調(diào)增區(qū)間;
(2)當(dāng)
時(shí),求函數(shù)
在區(qū)間
上的最小值;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com