【題目】甲廠以
千克/小時的速度勻速生產某種產品(生產條件要求
),每小時可獲得利潤是
元.
(1)要使生產該產品
小時獲得的利潤不低于
元,求
的取值范圍;
(2)要使生產
千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求此最大利潤.
科目:高中數(shù)學 來源: 題型:
【題目】某高中非畢業(yè)班學生人數(shù)分布情況如下表,為了了解這2000個學生的體重情況,從中隨機抽取160個學生并測量其體重數(shù)據(jù),根據(jù)測量數(shù)據(jù)制作了下圖所示的頻率分布直方圖.
![]()
![]()
(1)為了使抽取的160個樣品更具代表性,宜采取分層抽樣,請你給出一個你認為合適的分層抽樣方案,并確定每層應抽取的樣品個數(shù);
(2)根據(jù)頻率分布直方圖,求
的值,并估計全體非畢業(yè)班學生中體重在
內的人數(shù);
(3)已知高一全體學生的平均體重為
,高二全體學生的平均體重為
,試估計全體非畢業(yè)班學生的平均體重.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)若f (x)在區(qū)間(-∞,2)上為單調遞增函數(shù),求實數(shù)a的取值范圍;
(2)若a=0,x0<1,設直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產企業(yè)計劃引進一批新能源汽車制造設備,通過市場分析,全年需投入固定成本3000萬元,每生產x(百輛),需另投入成本
萬元,且
,由市場調研知,每輛車售價6萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2019年的利潤
(萬元)關于年產量x(百輛)的函數(shù)關系式;(利潤=銷售額
成本)
(2)2019年產量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
,其離心率為
,以原點為圓心,橢圓的短軸長為直徑的圓被直線
截得的弦長等于
.
(1)求橢圓
的方程;
(2)設
為橢圓
的左頂點,過點
的直線
與橢圓的另一個交點為
,與
軸相交于點
,過原點與
平行的直線與橢圓相交于
兩點,問是否存在常數(shù)
,使
恒成立?若存在,求出
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)),將曲線
上各點的橫坐標都縮短為原來的
倍,縱坐標坐標都伸長為原來的
倍,得到曲線
,在極坐標系(與直角坐標系
取相同的單位長度,且以原點
為極點,以
軸非負半軸為極軸)中,直線
的極坐標方程為
.
(1)求直線
和曲線
的直角坐標方程;
(2)設點
是曲線
上的一個動點,求它到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設
,
滿足約束條件
,則
的最大值為_______.
【答案】4
【解析】
,畫出可行域如下圖所示,由圖可知,目標函數(shù)在點
處取得最大值為
.
![]()
[點睛]本小題主要考查線性規(guī)劃的基本問題,考查了指數(shù)的運算. 畫二元一次不等式
或
表示的平面區(qū)域的基本步驟:①畫出直線
(有等號畫實線,無等號畫虛線);②當
時,取原點作為特殊點,判斷原點所在的平面區(qū)域;當
時,另取一特殊點判斷;③確定要畫不等式所表示的平面區(qū)域.
【題型】填空題
【結束】
14
【題目】已知數(shù)列
的前
項和公式為
,若
,則數(shù)列
的前
項和
__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
,且
).
(Ⅰ)求函數(shù)
的單調區(qū)間;
(Ⅱ)求函數(shù)
在
上的最大值.
【答案】(Ⅰ)
的單調增區(qū)間為
,單調減區(qū)間為
.(Ⅱ)當
時,
;當
時,
.
【解析】【試題分析】(I)利用
的二階導數(shù)來研究求得函數(shù)
的單調區(qū)間.(II) 由(Ⅰ)得
在
上單調遞減,在
上單調遞增,由此可知
.利用導數(shù)和對
分類討論求得函數(shù)在
不同取值時的最大值.
【試題解析】
(Ⅰ)
,
設
,則
.
∵
,
,∴
在
上單調遞增,
從而得
在
上單調遞增,又∵
,
∴當
時,
,當
時,
,
因此,
的單調增區(qū)間為
,單調減區(qū)間為
.
(Ⅱ)由(Ⅰ)得
在
上單調遞減,在
上單調遞增,
由此可知
.
∵
,
,
∴
.
設
,
則
.
∵當
時,
,∴
在
上單調遞增.
又∵
,∴當
時,
;當
時,
.
①當
時,
,即
,這時,
;
②當
時,
,即
,這時,
.
綜上,
在
上的最大值為:當
時,
;
當
時,
.
[點睛]本小題主要考查函數(shù)的單調性,考查利用導數(shù)求最大值. 與函數(shù)零點有關的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調區(qū)間和極值點,并結合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與
軸的位置關系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓
的參數(shù)方程和直線
的直角坐標方程;
( Ⅱ ) 設直線
與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人在微信群中發(fā)了一個8元“拼手氣”紅包,被甲、乙、丙三人搶完,若三人均領到整數(shù)元,且每人至少領到1元,則甲領到的錢數(shù)不少于其他任何人的概率為
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com