【題目】已知函數(shù)
.
(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
【答案】(1)
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)函數(shù)
,通過
對
恒成立,推出
,即可求出
的范圍;(2)利用
,化簡
,通過函數(shù)
在
處的切線方程為
,討論當(dāng)
時,
;當(dāng)
時,利用分析法證明;構(gòu)造函數(shù)
,求出
,構(gòu)造新函數(shù)
,利用公式的導(dǎo)數(shù)求解函數(shù)的最值,然后推出結(jié)論.
試題解析:(1)解 易知f ′(x)=-
,
由已知得f ′(x)≥0對x∈(-∞,2)恒成立,
故x≤1-a對x∈(-∞,2)恒成立,∴1-a≥2,∴a≤-1.
即實數(shù)a的取值范圍為(-∞,-1].
(2)證明 a=0,則f (x)=
.
函數(shù)f (x)的圖象在x=x0處的切線方程為y=g(x)=f′(x0)(x-x0)+f (x0).
令h(x)=f (x)-g(x)=f (x)-f ′(x0)(x-x0)-f (x0),x∈R,
則h′(x)=f ′(x)-f ′(x0)=
-
=
.
設(shè)φ(x)=(1-x)ex0-(1-x0)ex,x∈R,
則φ′(x)=-ex0-(1-x0)ex,∵x0<1,∴φ′(x)<0,
∴φ(x)在R上單調(diào)遞減,而φ(x0)=0,
∴當(dāng)x<x0時,φ(x)>0,當(dāng)x>x0時,φ(x)<0,
∴當(dāng)x<x0時,h′(x)>0,當(dāng)x>x0時,h′(x)<0,
∴h(x)在區(qū)間(-∞,x0)上為增函數(shù),在區(qū)間(x0,+∞)上為減函數(shù),
∴x∈R時,h(x)≤h(x0)=0,
∴f (x)≤g(x).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
同時滿足:(1)對于定義域上的任意
,恒有
;(2)對于定義域上的任意
,
,當(dāng)
時,恒有,
則稱函數(shù)
為“理想函數(shù)”.給出下列四個函數(shù)中:①
; ②
; ③
;④
,則被稱為“理想數(shù)”的有________(填相應(yīng)的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體
中,點
是對角線
上的動點(點
與
不重合),則下列結(jié)論正確的是____.
![]()
①存在點
,使得平面
平面
;
②存在點
,使得
平面
;
③
的面積不可能等于
;
④若
分別是
在平面
與平面
的正投影的面積,則存在點
,使得
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點為F,F關(guān)于原點的對稱點為P,過F作
軸的垂線交拋物線于M,N兩點,給出下列三個結(jié)論:
①
必為直角三角形;
②直線
必與拋物線相切;
③
的面積為
.其中正確的結(jié)論是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為
,射線
與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A,B兩點(異于M).
(1)求證:直線AB的斜率為定值;
(2)求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點
在拋物線
外,過點
作拋物線
的兩切線,設(shè)兩切點分別為
,
,記線段
的中點為
.
![]()
(Ⅰ)求切線
,
的方程;
(Ⅱ)證明:線段
的中點
在拋物線
上;
(Ⅲ)設(shè)點
為圓
上的點,當(dāng)
取最大值時,求點
的縱坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠以
千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求
),每小時可獲得利潤是
元.
(1)要使生產(chǎn)該產(chǎn)品
小時獲得的利潤不低于
元,求
的取值范圍;
(2)要使生產(chǎn)
千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
為等邊三角形,且平面
平面
,
,
,
.
![]()
(Ⅰ)證明:
;
(Ⅱ)若棱錐
的體積為
,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見解析;(Ⅱ)
.
【解析】【試題分析】(I) 取
的中點為
,連接
,
.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得
,由此證得
平面
,故
,故
.(II) 可知
是棱錐的高,利用體積公式求得
,利用勾股定理和等腰三角形的性質(zhì)求得
的值,進(jìn)而求得面積.
【試題解析】
證明:(Ⅰ)取
的中點為
,連接
,
,
∵
為等邊三角形,∴
.
底面
中,可得四邊形
為矩形,∴
,
∵
,∴
平面
,
∵
平面
,∴
.
又
,所以
.
(Ⅱ)由面
面
,
,
∴
平面
,所以
為棱錐
的高,
由
,知
,
,
∴
.
由(Ⅰ)知
,
,∴
.
.
由
,可知
平面
,∴
,
因此
.
在
中
,
,
取
的中點
,連結(jié)
,則
,
,
∴
.
所以棱錐
的側(cè)面積為
.
【題型】解答題
【結(jié)束】
20
【題目】已知圓
經(jīng)過橢圓
:
的兩個焦點和兩個頂點,點
,
,
是橢圓
上的兩點,它們在
軸兩側(cè),且
的平分線在
軸上,
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)證明:直線
過定點.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com