【題目】某區(qū)的區(qū)人大代表有教師6人,分別來自甲、乙、丙、丁四個學(xué)校,其中甲校教師記為
,乙校教師記為
,丙校教師記為
,丁校教師記為
.現(xiàn)從這6名教師代表中選出3名教師組成十九大報告宣講團(tuán),要求甲、乙、丙、丁四個學(xué)校中,每校至多選出1名.
(1)請列出十九大報告宣講團(tuán)組成人員的全部可能結(jié)果;
(2)求教師
被選中的概率;
(3)求宣講團(tuán)中沒有乙校教師代表的概率.
【答案】(1)見解析(2)
(3) ![]()
【解析】分析:(1)某區(qū)的區(qū)大代表中有教師6人,分別來自甲、乙、丙、丁四個學(xué)校,其中甲校教師記為A1,A2,乙校教師記為B1,B2,丙校教師記為C,丁校教師記為D.從這6名教師代表中選出3名教師組成十九大政策宣講團(tuán),利用列舉法能求出組成人員的全部可能結(jié)果.
(2)組成人員的全部可能結(jié)果中,利用列舉法求出A1被選中的結(jié)果有5種,由此能求出教師A1被選中的概率.
(3)利用列舉法求出宣講團(tuán)中沒有乙校代表的結(jié)果有2種,由此能求出宣講團(tuán)中沒有乙校教師代表的概率.
詳解:(1)從6名教師代表中選出3名教師組成十九大政策宣講團(tuán),組成人員的全部可能結(jié)果有:
,
,
,
,
,
,
,
,
,
,
,
共有12種不同可能結(jié)果.
(2)組成人員的全部可能結(jié)果中,
被選中的結(jié)果有
,
,
,
,
共有5種,
所以所求概率
.
(3)宣講團(tuán)沒有乙校代表的結(jié)果有:
,
共2種結(jié)果,所以所求概率為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲將要參加某決賽,賽前
,
,
,
四位同學(xué)對冠軍得主進(jìn)行競猜,每人選擇一名選手,已知
,
選擇甲的概率均為
,
,
選擇甲的概率均為
,且四人同時選擇甲的概率為
,四人均末選擇甲的概率為
.
(1)求
,
的值;
(2)設(shè)四位同學(xué)中選擇甲的人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
是
上的奇函數(shù),當(dāng)
時,
.
(1)求
的解析式并畫出函數(shù)的圖像;
(2)求
的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),
,
(I)證明:平面
平面
;
(II)若
,
三棱錐
的體積為
,求該三棱錐的側(cè)面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)為
,過點(diǎn)
垂直于
軸的直線與拋物線
相交于
兩點(diǎn),拋物線
在
兩點(diǎn)處的切線及直線
所圍成的三角形面積為
.
(1)求拋物線
的方程;
(2)設(shè)
是拋物線
上異于原點(diǎn)
的兩個動點(diǎn),且滿足
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
![]()
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,
,O是AC的中點(diǎn),
,
,
.
![]()
(1)證明:平面
平面ABC;
(2)若
,
,D是AB的中點(diǎn),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門共有員工60人,為調(diào)查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眼的時間,數(shù)據(jù)如下表(單位:小時)
甲部門 | 6 | 7 | 8 | |||
乙部門 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數(shù)?
(2)若將每天睡眠時間不少于7小時視為睡眠充足,現(xiàn)從該單位任取1人,估計拍到的此人為睡眠充足者的概率;
(3)再從甲部門和乙部門抽出的員工中,各隨機(jī)選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設(shè)所有員工睡眠的時間相互獨(dú)立,求A的睡眠時間不少于B的睡眼時間的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com