設(shè)直線
的方程為
.
(1)若
在兩坐標(biāo)軸上的截距相等,求
的方程;
(2)若
不經(jīng)過(guò)第二象限,求實(shí)數(shù)
的取值范圍。
(1)
;(2)
.
解析試題分析:(1)按直線是否經(jīng)過(guò)原點(diǎn)兩種情況討論,分別求出
的值,從而確定直線的方程;
(2)因?yàn)橹本的斜率一定存在,所以,由直線不過(guò)第二象限,可知直線的斜非負(fù),在
軸上的截距非正,從面確定實(shí)數(shù)的取值范圍.
試題解析:解(1)當(dāng)直線過(guò)原點(diǎn)時(shí),該直線在
軸和
軸上的截距都為零,當(dāng)然相等,
,方程即為
;若
,由截距存在,
即
,方程即為
.
(2)將
的方程化為
,
所以,要使
不經(jīng)過(guò)第二象限,當(dāng)且僅當(dāng)
或![]()
![]()
綜上可知
的取值范圍是
.
考點(diǎn):直線的一般式方程與截距式的互化.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定拋物線
,
是拋物線
的焦點(diǎn),過(guò)點(diǎn)
的直線
與
相交于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)設(shè)
的斜率為1,求以
為直徑的圓的方程;
(2)設(shè)
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的一個(gè)頂點(diǎn)為B(0,4),離心率
, 直線
交橢圓于M,N兩點(diǎn).
(1)若直線
的方程為y=x-4,求弦MN的長(zhǎng):
(2)如果
BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,點(diǎn)
依次滿足
。
(1)求點(diǎn)
的軌跡;
(2)過(guò)點(diǎn)
作直線
交以
為焦點(diǎn)的橢圓于
兩點(diǎn),線段
的中點(diǎn)到
軸的距離為
,且直線
與點(diǎn)
的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設(shè)點(diǎn)
的坐標(biāo)為
,是否存在橢圓上的點(diǎn)
及以
為圓心的一個(gè)圓,使得該圓與直線
都相切,如存在,求出
點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l經(jīng)過(guò)直線3x+4y-2=0與直線2x+y+2=0的交點(diǎn)P,且垂直于直線x-2y-1=0 .
(1)求直線l的方程; (2)求直線l關(guān)于原點(diǎn)O對(duì)稱的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l經(jīng)過(guò)點(diǎn)P(3,1),且被兩平行直線l1:x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
直線
,
為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)
作直線
的垂線,垂足為
,且
.
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)
、
是軌跡
上異于坐標(biāo)原點(diǎn)
的不同兩點(diǎn),軌跡
在點(diǎn)
、
處的切線分別為
、
,且
,
、
相交于點(diǎn)
,求點(diǎn)
的縱坐標(biāo).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com