【題目】設(shè)函數(shù)
, ![]()
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
,
時,求證:
.
【答案】(1)增區(qū)間為:
,
.減區(qū)間為
,
.(2) 見解析。
【解析】試題分析:(1)本問考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,首先確定函數(shù)的定義域為
,對
求導(dǎo)數(shù)
,解
得增區(qū)間,解
得減區(qū)間;(2)本問考查利有導(dǎo)數(shù)證明不等式,當(dāng)
時,只需證:
,即轉(zhuǎn)化為證明
當(dāng)
時成立,構(gòu)造函數(shù)
,轉(zhuǎn)化為證明
在
時恒成立即可,轉(zhuǎn)化為求函數(shù)
的最小值問題.
試題解析:(1)函數(shù)
的定義域為
,當(dāng)
時,
,
令:
,得:
或
,所以函數(shù)單調(diào)增區(qū)間為:
,
.
,得:
,所以函數(shù)單調(diào)減區(qū)間為
,
.
(2)若證
,
成立,只需證:
,
即:
當(dāng)
時成立.
設(shè)
.
∴
,顯然
在
內(nèi)是增函數(shù),
且
,
,
∴
在
內(nèi)有唯一零點
,使得:
,
且當(dāng)
,
;
當(dāng)
,
.
∴
在
遞減,在
遞增.
,
∵
,∴
.
∴
,∴
成立.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km). ![]()
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(x2﹣3)ex , 當(dāng)m在R上變化時,設(shè)關(guān)于x的方程f2(x)﹣mf(x)﹣
=0的不同實數(shù)解的個數(shù)為n,則n的所有可能的值為( )
A.3
B.1或3
C.3或5
D.1或3或5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
與
的中心在原點,焦點分別在
軸與
軸上,它們有相同的離心率
,并且
的短軸為
的長軸,
與
的四個焦點構(gòu)成的四邊形面積是
.
(1)求橢圓
與
的方程;
(2)設(shè)
是橢圓
上非頂點的動點,
與橢圓
長軸兩個頂點
,
的連線
,
分別與橢圓
交于
,
點.
(i)求證:直線
,
斜率之積為常數(shù);
(ii)直線
與直線
的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ka﹣x(k,a為常數(shù),a>0且a≠1)的圖象過點A(0,1),B(3,8).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=
是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)的單調(diào)性,并用定義證明你的結(jié)論;
(4)解不等式g(3x)+g(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其反函數(shù)為y=g(x).
(1)若g(mx2+2x+1)的定義域為R,求實數(shù)m的取值范圍;
(2)當(dāng)x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在實數(shù)m>n>2,使得函數(shù)y=h(x)的定義域為[n,m],值域為[n2 , m2],若存在,求出m、n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
和點P(4,2),直線l經(jīng)過點P且與橢圓交于A,B兩點.
(1)當(dāng)直線l的斜率為
時,求線段AB的長度;
(2)當(dāng)P點恰好為線段AB的中點時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
=
,
=(4sinx,cosx﹣sinx),f(x)=
.
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間
是增函數(shù),求ω的取值范圍;
(3)設(shè)集合A=
,B={x||f(x)﹣m|<2},若AB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班全體男生的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據(jù)此解答如下問題: ![]()
(1)求該班全體男生的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的男生人數(shù),并計算頻率公布直方圖如圖乙中[80,90)之間的矩形的高.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com