【題目】已知橢圓
的離心率
,以上頂點(diǎn)和右焦點(diǎn)為直徑端點(diǎn)的圓與直線
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)對(duì)于直線
和點(diǎn)
,橢圓
上是否存在不同的兩點(diǎn)
與
關(guān)于直線
對(duì)稱,且
,若存在實(shí)數(shù)
的值,若不存在,說明理由.
【答案】(Ⅰ)
;(Ⅱ)存在,
.
【解析】試題分析:(Ⅰ)由
得
,圓的方程為
,由圓心到直線的距離等于半徑可得
,故可得橢圓方程;(Ⅱ) 設(shè)
,
,直線
方程為:
,聯(lián)立方程組結(jié)合韋達(dá)定理,
,
,
,結(jié)合點(diǎn)
在直線
上,點(diǎn)
在直線
上得
,由
得
的值為
.
試題解析:(Ⅰ)由橢圓的離心率
得
,得
………………1分
上頂點(diǎn)為
,右焦點(diǎn)為
,
以上頂點(diǎn)和右焦點(diǎn)為直徑端點(diǎn)的圓的方程為
,
所以
,
,
,
,………………3分
橢圓的標(biāo)準(zhǔn)方程為
………………4分
(Ⅱ)由題意設(shè)
,
,直線
方程為:
.
聯(lián)立
消
整理可得:
,………………5分
由
,解得
………………6分
,
,
設(shè)直線
之中點(diǎn)為
,則
,………………7分
由點(diǎn)
在直線
上得:
,
又點(diǎn)
在直線
上,
,所以
……①………………9分
又
,
, ![]()
![]()
解得:
或
……②………………11分
綜合①②,
的值為
.………………12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(
,表示丟失的數(shù)據(jù))
無意愿 | 有意愿 | 總計(jì) | |
男 |
|
| 40 |
女 | 5 |
|
|
總計(jì) | 25 |
| 80 |
(1)求出
的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.
附參考公式及數(shù)據(jù):
,其中
.
| 0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 |
| 0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市英才中學(xué)的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)中學(xué)生的良好“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問卷,對(duì)收回的120份有效問卷進(jìn)行統(tǒng)計(jì),得到如下
列聯(lián)表:
做不到光盤 | 能做到光盤 | 合計(jì) | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計(jì) | 75 | 25 | 100 |
(1)現(xiàn)已按是否能做到光盤分層從45份女生問卷中抽取9份問卷,若從這9份問卷中隨機(jī)抽取4份,并記其中能做到光盤的問卷的份數(shù)為
,試求隨機(jī)變量
的分布列和數(shù)學(xué)期望;
(2)如果認(rèn)為良好“光盤習(xí)慣”與性別有關(guān)犯錯(cuò)誤的概率不超過
,那么根據(jù)臨界值表最精確的
的值應(yīng)為多少?請(qǐng)說明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量
,其中
.
獨(dú)立性檢驗(yàn)臨界表:
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測試中,客觀題難度的計(jì)算公式為
,其中
為第
題的難度,
為答對(duì)該題的人數(shù),
為參加測試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
題號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):
| 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對(duì)人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測答對(duì)人數(shù);
題號(hào) | 1 | 2 | 3 | 4 | 5 |
實(shí)測答對(duì)人數(shù) | |||||
實(shí)測難度 |
(Ⅱ)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;
(Ⅲ)定義統(tǒng)計(jì)量
,其中
為第
題的實(shí)測難度,
為第
題的預(yù)估難度
.規(guī)定:若
,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
:
的離心率為
,
為橢圓
的右焦點(diǎn),
,
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
為原點(diǎn),
為橢圓上一點(diǎn),
的中點(diǎn)為
,直線
與直線
交于點(diǎn)
,過
作
,交直線
于點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為菱形,
,
為
的中點(diǎn).
![]()
(1)若
,求證:
;
(2)若
,且
,點(diǎn)
在線段
上,試確定點(diǎn)
的位置,使二面角
大小為
,并求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)安排甲乙丙丁戊5名學(xué)生分別擔(dān)任語文、數(shù)學(xué)、英語、物理、化學(xué)學(xué)科的科代表,要求甲不當(dāng)語文科代表,乙不當(dāng)數(shù)學(xué)科代表,若丙當(dāng)物理科代表則丁必須當(dāng)化學(xué)科代表,則不同的選法共有多少種( )
A. 53 B. 67 C. 85 D. 91
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年來,我國許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進(jìn)行人工降雨,現(xiàn)由天氣預(yù)報(bào)得知,某地在未來5天的指定時(shí)間的降雨概率是:前3天均為
,后2天均為
,5天內(nèi)任何一天的該指定時(shí)間沒有降雨,則在當(dāng)天實(shí)行人工降雨,否則,當(dāng)天不實(shí)施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天數(shù)
的分布列和期望.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com