【題目】已知函數(shù)
在
上單調,且函數(shù)
的圖象關于直線
對稱,若數(shù)列
是公差不為0的等差數(shù)列,且
,則
的前100項的和為( )
A. 300B. 100C.
D. ![]()
【答案】D
【解析】
由函數(shù)y=f(x﹣2)的圖象關于x=1軸對稱,平移可得y=f(x)的圖象關于x=﹣1對稱,由題意可得a50+a51=﹣2,運用等差數(shù)列的性質和求和公式,計算即可得到所求和.
函數(shù)f(x)在(﹣1,+∞)上單調,且函數(shù)y=f(x﹣2)的圖象關于x=1對稱,
可得y=f(x)的圖象關于x=﹣1對稱,
由數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),
可得a50+a51=﹣2,又{an}是等差數(shù)列,
所以a1+a100=a50+a51=﹣2,
則{an}的前100項的和為
100
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】已知
為坐標原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓
的標準方程;
(2)是否存在直線
:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)在現(xiàn)有設備下每日生產總成本
(單位:萬元)與日產量
(單位:噸)之間的函數(shù)關系式為
,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設備,每噸產品除塵費用為
萬元,除塵后當日產量
時,總成本
.
(1)求
的值;
(2)若每噸產品出廠價為48萬元,試求除塵后日產量為多少時,每噸產品的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點M為線段PA上任意一點(不含端點),點N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD.
(2)若點M為線段PA的中點,求直線PB與平面AMN所成角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的中心在坐標原點,兩焦點分別為雙曲線
的頂點,直線
與橢圓
交于A,B兩點,且點A的坐標為
,點Р是橢圓
上異于A,B的任意一點,點Q滿足
,
,且A,B,Q三點不共線.
(1)求橢圓
的方程;
(2)求點Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+
﹣1,a∈R.
(1)當a>0時,若函數(shù)f(x)在區(qū)間[1,3]上的最小值為
,求a的值;
(2)討論函數(shù)g(x)=f′(x)﹣
零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,半徑為2的
切直線MN于點P,射線PK從PN出發(fā)繞點P逆時針方向旋轉到PM,旋轉過程中,PK交
于點Q,設
為x,弓形PmQ的面積為
,那么
的圖象大致是
![]()
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知數(shù)列
,首項
,設該數(shù)列的前
項的和為
,且![]()
(1)求數(shù)列
的通項公式;
(2)若數(shù)列
滿足
,求數(shù)列
的通項公式;
(3)在第(2)小題的條件下,令
,
是數(shù)列
的前
項和,若對
,
恒成立,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com