【題目】在平面直角坐標(biāo)系
中,已知橢圓
:
的離心率
,
,
分別為左、右焦點(diǎn),過(guò)
的直線交橢圓
于
,
兩點(diǎn),且
的周長(zhǎng)為8.
(1)求橢圓
的方程;
(2)設(shè)過(guò)點(diǎn)
的直線交橢圓
于不同兩點(diǎn)
,
.
為橢圓上一點(diǎn),且滿(mǎn)足
(
為坐標(biāo)原點(diǎn)),當(dāng)
時(shí),求實(shí)數(shù)
的取值范圍.
【答案】(1)
;(2)![]()
【解析】試題分析:(1
的周長(zhǎng)為
可得
,由離心率
,結(jié)合性質(zhì)
可得,
,從而可得橢圓
的方程是
;(2)
的方程為
,
由
,整理得
.根據(jù)判別式大于零得
,由
,求出
代入橢圓方程化簡(jiǎn)得
,再利用弦長(zhǎng)公式及
可得
,綜上可得結(jié)果.
試題解析:(1)∵
,∴
.
又∵
,∴
,∴
,∴橢圓
的方程是
.
(2)設(shè)
,
,
,
的方程為
,
由
,整理得
.
由
,得
.
∵
,
,
∴
,
則
,
.
由點(diǎn)
在橢圓上,得
,化簡(jiǎn)得
. ①
又由
,即
,
將
,
代入得
,
化簡(jiǎn),得
,則
,
,∴
. ②
由①,得
,聯(lián)立②,解得
.
∴
或
,即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高三年級(jí)在一次理科綜合檢測(cè)中統(tǒng)計(jì)了部分“住校生”和“非住校生”共20人的物理、化學(xué)的成績(jī)制成下列散點(diǎn)圖(物理成績(jī)用
表示,化學(xué)成績(jī)用
表示)(圖1)和生物成績(jī)的莖葉圖(圖2).
![]()
![]()
![]()
(圖1)
住校生 非住校生
2 6
9 8 5 4 4 3 1 7 4 5 7 7 9 9
6 5 8 2 2 5 7
(圖2)
(1)若物理成績(jī)高于90分,我們視為“優(yōu)秀”,那么以這20人為樣本,從物理成績(jī)優(yōu)秀的人中隨機(jī)抽取2人,求至少有1人是住校生的概率;
(2)若化學(xué)成績(jī)高于80分,我們視為“優(yōu)秀”,根據(jù)圖1完成如下列聯(lián)表,并判斷是否有95%的把握認(rèn)為優(yōu)秀率與住校有關(guān);
住校 | 非住校 | |
優(yōu) 秀 | ||
非優(yōu)秀 |
附:(
,其中
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(3)若生物成績(jī)高于75分,我們視為“良好”,將頻率視為概率,若從全年級(jí)學(xué)生中任選3人,記3人中生物成績(jī)?yōu)椤傲己谩钡膶W(xué)生人數(shù)為隨機(jī)變量
,求出
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣3|+x+1.
(1)求函數(shù)f(x)的最小值;
(2)當(dāng)x≥1時(shí),關(guān)于x的不等式f(2x)<4x+2a恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)為了計(jì)算函數(shù)
圖象與x軸,直線
,
所圍成形狀A(yù)的面積,采用“隨機(jī)模擬方法”,用計(jì)算機(jī)分別產(chǎn)生10個(gè)在
上的均勻隨機(jī)數(shù)
和10個(gè)在
上的均勻隨機(jī)數(shù)
,其數(shù)據(jù)記錄為如下表的前兩行.
| 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
| 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
| 0.92 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
(1)依據(jù)表格中的數(shù)據(jù)回答,在圖形A內(nèi)的點(diǎn)有多少個(gè),分別是什么?
(2)估算圖形A的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】玉山一中籃球體育測(cè)試要求學(xué)生完成“立定投籃”和“三步上籃”兩項(xiàng)測(cè)試,“立定投籃”和“三步上籃”各有2次投籃機(jī)會(huì),先進(jìn)行“立定投籃”測(cè)試,如果合格才能參加“三步上籃”測(cè)試.為了節(jié)約時(shí)間,每項(xiàng)測(cè)試只需且必須投中一次即為合格.小華同學(xué)“立定投籃”的命中率為
,“三步上籃”的命中率為
.假設(shè)小華不放棄任何一次投籃機(jī)會(huì)且每次投籃是否命中相互獨(dú)立.
(1)求小華同學(xué)兩項(xiàng)測(cè)試均合格的概率;
(2)設(shè)測(cè)試過(guò)程中小華投籃次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
,
為參數(shù),且
.
(Ⅰ)當(dāng)
時(shí),判斷函數(shù)
是否有極值.
(Ⅱ)要使函數(shù)
的極小值大于零,求參數(shù)
的取值范圍.
(Ⅲ)若對(duì)(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù)
,函數(shù)
在區(qū)間
內(nèi)都是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求函數(shù)
的零點(diǎn);
(2)若
,求函數(shù)
在區(qū)間
上的最小值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地煤氣公司規(guī)定,居民每個(gè)月使用的煤氣費(fèi)由基本月租費(fèi)、保險(xiǎn)費(fèi)和超額費(fèi)組成.每個(gè)月的保險(xiǎn)費(fèi)為3元,當(dāng)每個(gè)月使用的煤氣量不超過(guò)am3時(shí),只繳納基本月租費(fèi)c元;如果超過(guò)這個(gè)使用量,超出的部分按b元/m3計(jì)費(fèi).
(1)請(qǐng)寫(xiě)出每個(gè)月的煤氣費(fèi)y(元)關(guān)于該月使用的煤氣量x(m3)的函數(shù)解析式;
(2)如果某個(gè)居民7~9月份使用煤氣與收費(fèi)情況如下表,請(qǐng)求出a,b,c,并畫(huà)出函數(shù)圖象;
月份 | 煤氣使用量/m3 | 煤氣費(fèi)/元 |
7 | 4 | 4 |
8 | 10 | 10 |
9 | 16 | 19 |
其中,僅7月份煤氣使用量未超過(guò)am3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教育部門(mén)為了了解全市高一學(xué)生的身高發(fā)育情況,從本市全體高一學(xué)生中隨機(jī)抽取了100人的身高數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計(jì)該市高一學(xué)生的身高概率.
![]()
(I)求該市高一學(xué)生身高高于1.70米的概率,并求圖1中
的值.
(II)若從該市高一學(xué)生中隨機(jī)選取3名學(xué)生,記
為身高在
的學(xué)生人數(shù),求
的分布列和數(shù)學(xué)期望;
(Ⅲ)若變量
滿(mǎn)足
且
,則稱(chēng)變量
滿(mǎn)足近似于正態(tài)分布
的概率分布.如果該市高一學(xué)生的身高滿(mǎn)足近似于正態(tài)分布
的概率分布,則認(rèn)為該市高一學(xué)生的身高發(fā)育總體是正常的.試判斷該市高一學(xué)生的身高發(fā)育總體是否正常,并說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com