【題目】設橢圓
:
的左右焦點分別為
,
,上頂點為
.
(Ⅰ)若
.
(i)求橢圓
的離心率;
(ii)設直線
與橢圓
的另一個交點為
,若
的面積為
,求橢圓
的標準方程;
(Ⅱ)由橢圓
上不同三點構成的三角形稱為橢圓的內接三角形,當
時,若以
為直角頂點的橢圓
的內接等腰直角三角形恰有3個,求實數(shù)
的取值范圍.
【答案】(Ⅰ)(i)
;(ii)
;(Ⅱ)![]()
【解析】
(Ⅰ)(i)由勾股定理化簡可得
,進而可得橢圓的離心率;(ii)易知
,故橢圓
:
,求出直線
方程為:
,聯(lián)立直線與橢圓的方程求出
點坐標,計算出
,則
,得到
,進而得出橢圓方程;
(Ⅱ)設橢圓
內接等腰直角三角形的兩直角邊分別為
,
,設
,
,顯然
,
不與坐標軸平行,且
,設直線
的方程為
,聯(lián)立直線與橢圓方程,利用韋達定理以及弦長公式求出
,同理得出
,化簡可得出關于
的方程
有兩個不同的正實根
,
,且都不為1,通過數(shù)形結合思想,轉化求解即可.
(Ⅰ)(i)可知,
,
,
∵
,∴
,
∴
.
∴
.
(ii)由(i)知
,
,
∴橢圓
:
,
可知直線
斜率為1,
,
,
則直線
方程為:
,
由
,得
,
得
,
,∴
,
,
∴
,
∴
,
∴
,
∵
,∴
,
∴橢圓
的方程為:
.
(Ⅱ)
時,橢圓
:
,
,
設橢圓
內接等腰直角三角形的兩直角邊分別為
,
,
設
,
,顯然
,
不與坐標軸平行,且
,
所以不妨設直線
的方程為
,則直線
的方程為
,
由
,消去
得到
,
所以
,
,
求得![]()
,
同理可求
.
因為
為以
為直角頂點的等腰直角三角形,所以
,
所以
,
整理得
,
所以
,
所以
或
,
所以
或
,
設
,因為以
為直角頂點的橢圓內接等腰直角三角形恰有三個,
所以關于
的方程
有兩個不同的正實根
,
,且都不為1.
∵
,
所以
,
解得實數(shù)
的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調區(qū)間與極值;
(Ⅱ)若不等式
對任意
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
的前n項和為
,且滿足
,數(shù)列
中,
,對任意正整數(shù)
,
.
(1)求數(shù)列
的通項公式;
(2)是否存在實數(shù)
,使得數(shù)列
是等比數(shù)列?若存在,請求出實數(shù)
及公比q的值,若不存在,請說明理由;
(3)求數(shù)列
前n項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】方程
的曲線即為函數(shù)
的圖象,對于函數(shù)
,有如下結論:①
在
上單調遞減;②函數(shù)
存在零點;③函數(shù)
的值域是R;④若函數(shù)
和
的圖象關于原點對稱,則函數(shù)
的圖象就是
確定的曲線
其中所有正確的命題序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次購物抽獎活動中,已知某10張獎券中有6張有獎,其余4張沒有獎,且有獎的6張獎券每張均可獲得價值10元的獎品.某顧客從此10張獎券中任意抽取3張.
(1)求該顧客中獎的概率;
(2)若約定抽取的3張獎券都有獎時,還要另獎價值6元的獎品,求該顧客獲得的獎品總價值
(元)的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間內沒有發(fā)生大規(guī)模群體感染的標志是“連續(xù)10天,每天新增疑似病例不超過7人”,根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是( )
A. 甲地:總體均值為3,中位數(shù)為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:總體均值為2,總體方差為3
D. 丁地:中位數(shù)為2,眾數(shù)為3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市教育局衛(wèi)生健康所對全市高三年級的學生身高進行抽樣調查,隨機抽取了100名學生,他們身高都處于
五個層次,根據(jù)抽樣結果得到如下統(tǒng)計圖表,則從圖表中不能得出的信息是( )
![]()
A. 樣本中男生人數(shù)少于女生人數(shù)
B. 樣本中
層次身高人數(shù)最多
C. 樣本中
層次身高的男生多于女生
D. 樣本中
層次身高的女生有3人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知位于
軸左側的圓
與
軸相切于點
且被
軸分成的兩段圓弧長之比為
,直線
與圓
相交于
,
兩點,且以
為直徑的圓恰好經過坐標原點
.
![]()
(1)求圓
的方程;
(2)求直線
的斜率
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com