【題目】(本題滿分12分)將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球將自由下落.小球在下落過程中,將3次遇到黑色障礙物,最后落入
袋或
袋中.已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是.
(Ⅰ)求小球落入
袋中的概率
;
(Ⅱ)在容器入口處依次放入4個小球,記
為落入
袋中小球的個數(shù),試求
的概率和
的數(shù)學期望
.
![]()
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù)
,數(shù)列
為等差數(shù)列,且公差不為0,若
,則
( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設計成半徑為1km的扇形
,中心角
(
).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形
,其中點
,
分別在邊
和
上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求
的最大值;
(2)試問:當
為多少時,年總收入最大?
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐
的底面
是等邊三角形,點
在平面
上的射影在
內(nèi)(不包括邊界),
.記
,
與底面所成角為
,
;二面角
,
的平面角為
,
,則
,
,
,
之間的大小關系等確定的是()
A.
B. ![]()
C.
是最小角,
是最大角D. 只能確定
,![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的六面體中,面
是邊長為2的正方形,面
是直角梯形,
,
.
(1)求證:
平面
;
(2)若二面角
為60°,求直線
和平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù),事件A:“兩數(shù)之和為8”,事件B:“兩數(shù)之和是3的倍數(shù)”,事件C:“兩個數(shù)均為偶數(shù)”.
(I)寫出該試驗的基本事件
,并求事件A發(fā)生的概率;
(II)求事件B發(fā)生的概率;
(III)事件A與事件C至少有一個發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:“冪勢既同,則積不容異“.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為( )
A.
πB.
πC.4
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知隨機變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,則P(5<X<6)=( )
A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com